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Abstract. We develop a new computationally efficient approach for the analysis of complex large-scale neurobi-
ological networks. Its key element is the use of a new phenomenological model of a neuron capable of replicating
important spike pattern characteristics and designed in the form of a system of difference equations (a map). We
developed a set of map-based models that replicate spiking activity of cortical fast spiking, regular spiking and
intrinsically bursting neurons. Interconnected with synaptic currents these model neurons demonstrated responses
very similar to those found with Hodgkin-Huxley models and in experiments. We illustrate the efficacy of this
approach in simulations of one- and two-dimensional cortical network models consisting of regular spiking neurons
and fast spiking interneurons to model sleep and activated states of the thalamocortical system. Our study suggests
that map-based models can be widely used for large-scale simulations and that such models are especially useful
for tasks where the modeling of specific firing patterns of different cell classes is important.
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Introduction

Brain systems consist of a large number of various types
of neurons interconnected with electrical and chemical
synapses of different polarity. To study the function-
ality of a brain system, modeling of large-scale net-
works, containing hundreds of thousands of neurons,
is needed. Computer models commonly used for neuro-
biological simulations are based on dynamical systems
given by ordinary differential equations (ODE). To de-
scribe the dynamics of firing patterns generated by a
neuron, such models should contain variables of multi-

ple time scales ranging from less than one millisecond
(to control spike generation) to hundreds of millisec-
onds to describe slow intrinsic and synaptic processes.
Such a diversity of time scales limits the speed of the
numerical simulations.

We propose a way to improve computational effi-
ciency of network simulations by designing a model
that ignores the duration and shape of individual spikes,
but captures the dynamics of the other time scales. This
is achieved by using a dynamical system written in the
form of difference equations (a map) that generate a
sequence of membrane potential samples in discrete
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moments of time. In this approach each spike takes only
one sample in the waveform data. The other, relatively
slow dynamical processes imprinted in the firing pat-
tern can be captured correctly, because the discreteness
of time does not alter their relatively slow dynamics. An
example of such a map-based model has been recently
proposed for modeling of spiking-bursting neuron ac-
tivity (Rulkov, 2002). Attractive features of this map-
based model include the simplicity of the equation, the
ability to describe a broad range of firing patterns found
in biological neurons (Jahnsen and Llinás, 1984; Mc-
Cormick et al., 1985; Connors and Gutnick, 1990; Gray
and McCormick, 1996; Steriade et al., 1998), and the
possibility to adopt models of synapses typically used
in simulations of networks with Hodgkin-Huxley (HH)
equations.

In this paper we develop a map-based model ap-
proach for numerical simulations of large-scale corti-
cal networks. Specific applications reported in the pa-
per include the following: simple and computationally
efficient map-based models that reproduce the elec-
trophysiological fingerprints of cortical neurons are
proposed; it is shown that for one–dimensional net-
works map-based models yield results similar to those
obtained with HH neurons; multi-dimensional mul-
tilayer networks of map-based neurons can be sim-
ulated using conventional workstations; in contrast
to non-spiking models of neurons (e.g. firing-rate
models) map-based models can produce information
about oscillations, synchronization and correlations.
Using two-dimensional network simulations with up to
100,000 neurons we explored regimes of self-sustained
neuronal activity in the form of interacting rotating spi-
ral waves. The dynamical features of this activity was
very similar to slow-wave sleep (SWS) oscillations—
low-frequency (0.3–1 Hz) rhythms dominating cor-
tical activity during natural sleep and under some
types of anesthesia (Steriade et al., 1993a, 1993b,
2001; Timofeev et al., 2001b). Transitions between
the state composed of slow waves and the activated
state (which is reminiscent of awake like activity) were
modeled by changing intrinsic parameters of the model
neurons.

Materials and Methods

In vivo Recordings

Experiments were carried out on adult cats anes-
thetized with sodium pentobarbital (commercial name

SOMNATOL, 35 mg/kg, i.p.; n = 37). The electroen-
cephalogram (EEG) was monitored continuously dur-
ing the experiments to ascertain the depth of anesthesia.
Additional doses of the same anesthetic were given at
the slightest tendency toward activated EEG patterns.
The tissue to be incised and the pressure points were
infiltrated with lidocaine (2%). The cats were para-
lyzed with gallamine triethiodide only after the EEG
showed typical signs of deep general anesthesia and
were ventilated artificially with the control end-tidal
CO2 at 3.5–3.8%. The rectal temperature was moni-
tored and maintained at 37–38◦C and the heart rate was
90–110 beats/min. The stability of intracellular record-
ings was ensured by bilateral pneumothorax, cisternal
drainage, hip suspension, and by filling holes that were
opened in the cranium with a warm agar (4% in 0.9%
saline). At the end of experiments, the animals were
given a lethal dose of pentobarbital (50 mg/kg i.v.).
The experimental protocol has been approved by the
committee for animal care in Laval University and also
confirms with guidelines recommended by the National
Institute of Health.

Intracellular recordings of cortical neurons from ar-
eas 5 and 7 were performed with glass micropipettes
filled with a solution of 3 M potassium acetate. The
electrode had a DC resistance of 30–80 M�. A high-
impedance amplifier (bandpass, 10 kHz) with an active
bridge circuitry was used to record and inject currents
into the cells. All electrical signals were digitized on-
line with a sampling rate of 20 kHz.

Hodgkin-Huxley Type Model

Intrinsic Currents. The cortical pyramidal (PY)
cells and interneurons (INs) were modeled with two-
compartment models with channels described by
Hodgkin-Huxley kinetics (Mainen and Sejnowski,
1996):

Cm
dVD

dt
= −gL (VD − EL ) − g(VD − VS) − I int

D − I syn,

g(VS − VD) = −I int
S , (1)

where Cm , gL are the membrane capacitance and the
leakage conductance of the dendritic compartment, EL

is the reversal potential, VD and VS are the membrane
potentials of dendritic and axo-somatic compartments,
I int

D and I int
S are a sums of active intrinsic currents

in axo-somatic and dendritic compartments, I syn is a
sum of synaptic currents and g is the conductance be-
tween axo-somatic and dendritic compartments. In this
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model, the axo-somatic compartment had no capaci-
tance, which sped up the simulations but had little ef-
fect on the spike firing patterns (Mainen and Sejnowski,
1996). The soma and axon initial segment is charac-
terized by high conductance densities; when capac-
itance is included in this compartment smaller inte-
gration steps were needed to ensure stability of the
calculation, but model firing patterns were unaffected
(Mainen and Sejnowski, 1996). The model includes a
high density of fast Na+ channels in the axo-somatic
compartment and a low density in the dendritic com-
partment. A fast potassium current is present in the
axo-somatic compartment. A slow voltage-dependent
K+ M-current, slow Ca2+ dependent K+ current, a
high-threshold Ca2+ current, persistent Na+ current, a
hyperpolarization-activated cation current (h-current)
and a potassium leak current, IKL = gKL(V − EKL),
were included in the dendritic compartment. The ex-
pressions for the voltage- and Ca2+-dependent transi-
tion rates for all currents are given in Timofeev et al.
(2000). The maximal conductances and passive proper-
ties were Ssoma = 1.0 ·10−6 cm2, gNa = 3000 mS/cm2,
gK = 200 mS/cm2 for the axo-somatic compart-
ment and Cm = 0.75 µF/cm2, gL = 0.033 mS/cm2,
gKL = 0 − 0.0025 mS/cm2, Sdend = Ssomar , gCa =
0.01 mS/cm2, gNa = 1.5 mS/cm2, gKCa = 0.3 mS/cm2,
gKm = 0.01 mS/cm2, gNa(p) = 0.02−0.046 mS/cm2 for
the dendritic compartment. EL = −68 mV and EKL =
−95 mV. No INa(p) was modeled for IN cells. The re-
sistance between compartments was R = 10 M�.

The firing properties of the model in Eq. (1) depend
on the coupling conductance between compartments
(g = 1/R) and the ratio of dendritic area to axo-
somatic area r (Mainen and Sejnowski, 1996). Such de-
pendence of the firing properties in two-compartmental
neuron model on the electrical coupling between com-
partments was first described in Pinsky and Rinzel
(1994). In the network simulations, we used a model
of a regular-spiking neuron for PY cells (r = 140) and
a model of a fast spiking neuron for IN cells (r = 50).

Synaptic Currents. All synaptic currents were calcu-
lated according to:

Isyn = gsyn[O](V − Esyn), (2)

where gsyn is the maximal conductivity, [O](t) is the
fraction of open channels and Esyn is the reversal po-
tential. E syn

AMPA = 0 mV for AMPA receptors and
E syn

GABAA = −70 mV for GABAA receptors. A sim-
ple phenomenological model was used to describe

short-term depression of intracortical excitatory con-
nections (Abbott et al., 1997; Tsodyks and Markram,
1997; Galarreta and Hestrin, 1998; Timofeev et al.,
2000). According to this model a maximal synaptic
conductance was multiplied with a depression variable,
D ≤ 1, representing the amount of available “synaptic
resources”. D = 1− (1− Di (1−U )) exp(−(t − ti )/τ ),
where U = 0.07 is the fraction of resources used per
action potential, τ = 700 ms the time constant of re-
covery of the synaptic resources, Di the value of D
immediately before the i th event, and (t − ti ) the time
after the i th event.

GABAA and AMPA synaptic currents were mod-
eled by first-order activation schemes (Destexhe et al.,
1994b). The equations for all synaptic currents are
given in Timofeev et al. (2000). The maximal conduc-
tances (for each synapse) were gAMPA(PY−PY) = 0.08–
0.15µS, gAMPA(PY−IN) = 0.05µS and gGABAA(IN−PY) =
0.05 µS.

Computational Map-Based Model

Base Model. To model the dynamics of large-scale
networks we used a computationally efficient phe-
nomenological model implemented in the form of dif-
ference equations (a map). This map-based model is
capable of generating various types of spiking and
spiking-bursting activity and in its original form is writ-
ten as Rulkov (2002)

xn+1 = fα(xn, xn−1, yn + βn),
(3)

yn+1 = yn − µ(xn + 1) + µσ + µσn,

where xn is the fast and yn is the slow dynamical vari-
able. Slow time evolution of yn is achieved by using
small values of the parameter 0 < µ � 1. Parame-
ters α and σ control the dynamics and they are set to
mimic the behavior of a particular type of neuron. Input
variables βn and σn incorporate the action of synaptic
inputs I syn and also the action of some intrinsic cur-
rents that are not explicitly captured by model (3). The
nonlinear function fα(xn, xn−1, yn + βn) is given by

fα(xn, xn−1, u)

=



α/(1 − xn) + u, xn ≤ 0

α + u, 0 < xn < α + u and xn−1 ≤ 0

−1, xn ≥ α + u or xn−1 > 0,

(4)
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where u = yn + βn . Such a form of nonlinearity was
proposed in Rulkov (2002) to achieve the birth of a
limit cycle whose waveform appear as a sequence of
sharp spikes. Each of these spikes is formed using only
one sample which occurs on the top of the spike. This
sample corresponds to the trajectory point occurred on
the rightmost interval of the function. As the result
our map-based model uses only one iteration to form
a spike and never misses a spike. To ensure that, after
being perturbed by various types of inputs, the map still
reliably produces sharp spikes with only one point on
the top of each spike the nonlinear function (5) adopts
a modification (dependence on xn−1), which was sug-
gested and discussed in detail in the last section of
Rulkov (2002).

The individual dynamics of the fast subsystem, given
by the first equation of (3) with yn = yrs = const,
βn = 0, is designed in such a way that it can repli-
cate the states of silence or tonic spiking depending on
the value of the control parameters α and yrs . Com-
parison of the dynamics of the fast subsystem with
the dynamics of a minimal model based on Hodgkin-
Huxley kinetics shows that this subsystem is sufficient
to replicate the membrane potential dynamics caused
by a transient sodium current, INa, and a fast potassium
current, IK. The values of xn can be rescaled to have
correct voltage units that represent the membrane po-
tential measured in experiments. However, we do not
rescale the variable xn in this paper for the sake of
simplicity and computational efficiency.

The second equation of (3) introduces slow tran-
sient dynamics between the two states of the fast sub-
system and is used to capture various effects such
as spike adaptation and the generation of bursts of
spikes. Although the slow subsystem in (3) is not de-
rived from any biological framework it still can be
designed in such a way that the map-based model
can mimic prevalent electrophysiological characteris-
tics of neurons caused by biological processes. De-
pending on the values of σ and α the individual dy-
namics of the basic model (βn = 0 and σn = 0)
show the following types of behavior, which can be
easily understood using the analysis of a phase por-
trait (see Rulkov, 2002; Shilnikov and Rulkov, 2003).
When σ < σth = 2 − √

α/(1 − µ) the system con-
verges to the stable fixed point O0 with the coordinates
xO = −1 + σ and yO = −1 + σ − α/(2 − σ ) and
stays silent. At the threshold σ = σth the fixed point
loses stability due to a subcritical Andronov-Hopf bi-
furcation and, for σ > σ th the map generates continu-

ous spikes or bursts of spikes depending on the value
of α.

The design of model (3) relies on the bifurcation
methodologies and in that sense is similar to a model
recently proposed by Izhikevich (2003), which is de-
signed in the form a two-dimensional system of or-
dinary differential equations. Integrating Izhikevich’s
model using a large step Euler scheme one transforms
the ODE system into a two-dimensional map. The dy-
namics of such a map and our model are similar and
both maps allow replicating a large variety of firing pat-
terns. It is shown in Izhikevich (2004) that this type of
models is more efficient, in terms of simulation speed
with a potential to generate realistic firing patterns of
various types of neurons, than most other simple ODE-
based models including well-known integrate-and-fire
model. The main differences between the map-based
model proposed in this manuscript and Izhikevich’s
model is that our design is based directly on the map
dynamics and the map is designed to ensure that no
spikes are missing and that each spike is formed with
the minimal number of steps (iterations). Map-based
model always generates a sample on the top of each
spike. In the case of Izhikevich’s model the dynamical
properties of the model are designed within a frame-
work of continuous time system and it is unclear if
these properties remain when one uses a large step Eu-
ler integration scheme that gives only one or two steps
within the width of spike.

Considering map (3) in the parameter region α < 4
we omit the regimes of spiking-bursting activity in the
individual dynamics of the basic model and allow the
model to generate activity only in the form of tonic
spiking or silence, see Rulkov (2002) for details. The
type and characteristics of the selected behavior are
controlled by parameter σ which sets the baseline level
of the cell. Consider the case when the baseline level
is set in the silence mode. The system can be excited
by a rectangular pulse of depolarizing current In = A,
for nstart ≤ n ≤ nend, and In = 0, otherwise. Act-
ing through the input variable σn , σn = σ e In , the cur-
rent pushes the system over the excitation threshold
σ th and the map generate spikes during the action of
the pulse. Figure 1 shows firing patterns induced by
such a pulse. Consecutive iterations of xn in the two
top plots are connected with straight lines. Such lines
will be used throughout the paper to present the fir-
ing patterns of neurons while the actual values of xn

shown by small black circles will be omitted. Note that
the input variable σn acts as a variation of parameter
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Figure 1. Waveforms of xn illustrating the role of the parameter βe in the generation of firing responses of the map model (3). A rectangular
pulse of an external depolarizing current In of duration 870 iterations and amplitude A, 2A (200%) and 4A (400%) was applied to excite the
activity. The parameter values are: α = 3.65, σ = 6.0E–2, µ = 0.0005, σ e = 1.0, and A = 3.1E–2. (A) shows the case βe = 0.0 and (B)
βe = 0.133. The actual values of xn and In from (3) are shown with small black circles for the cases of 100% and 200% of the pulse amplitude.
The iterations of xn in the top plots are connected with lines (cases of 200% and 400%).

σ (see Eq. (3)). The frequency of spiking increases as
the level of depolarization (amplitude A) is increased
(Fig. 1).

Capturing the Effects Associated with Other Ionic
Currents. In our study the base model will be sup-
plemented with an input variable βn that, as well as
the input variable σn , will be a function of the synaptic
currents. The role of βn becomes clear when one ex-
amines the reaction of the model to a rectangular pulse
In . Setting this input parameter to be proportional In ,
namely, βn = βe In , one can replicate the effects of
deceleration of spiking (spike frequency adaptation)
and afterhyperpolarization. The model map reacts to
the changes of βn instantly. It is equivalent to a fast
shift of the value of the slow variable yn by the value
βn − βn−1 which makes the fast map (3) start spiking
instantly at a fast rate. Then, if βn does not change, the
state of the map slowly drifts back as the variable yn

changes. The rate of this drift is controlled by parame-
ter µ. Typical patterns generated by the model with this
setting are shown in Fig. 1B. This dynamical mecha-
nism allows us to replicate the effects of spiking decel-
eration and afterhyperpolarization, without increasing
the number of equations in the model. We use this ap-
proach to replicate the properties of regular spiking
cells.

To control the effect of hyperpolarization caused by
each generated spike, we modify the model (3) in the

following way. We introduce a phenomenological hy-
perpolarizing current I hp

n generated by the action of
each spike,

I hp
n+1 = γ hp I hp

n −



ghp, if the n-th iteration
carries a spike

0, otherwise.
(5)

Parameter γ hp controls the duration, τ hp ∼ (1 −
γ hp)−1, and parameter ghp the amplitude of the hyper-
polarizing current. In accordance with Eq. (4) the first
condition in (5) is satisfied only when xn ≥ α+ yn +βn

or xn−1 > 0. Equation (5) substitutes the slow subsys-
tem of the base model (3). The fast subsystem in this
case can be written in the following form

xn+1 = fα
(
xn, xn−1, yrs + βhp I hp

n + βe In
)
, (6)

where yrs is a constant defining the resting state of the
modified model. Here, the slow variable I hp

n is com-
puted with (5). The effects of after-spike hyperpolar-
ization captured by this model are illustrated in Fig. 2
where a depolarizing rectangular pulse of external cur-
rent In excites the cell. When a spike is generated, it
excites an I hp pulse which hyperpolarizes the cell, see
the xn waveforms. The depth and duration of the hy-
perpolarization is controlled by parameter ghp and γ hp

respectively (Fig. 2). Equations (5), (6) are used for the
description of the interneuron (IN) dynamics.
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Figure 2. Modeling the effect of hyperpolarization after a spike with the map-based neurons given by Eqs. (5) and (6). The fixed parameters
are α = 3.8, µ = 0.002, yrs = −2.9, βhp = 0.5, βe = 0.1 and the duration of depolarizing pulse −200 iterations. The parameters γ hp , ghp and
the pulse amplitude A are varied to illustrate the role of these parameters. 100% corresponds to A = 0.5. The three cases A, B and C correspond
to γ hp = 0.6, ghp = 0.1; γ hp = 0.6, ghp = 0.5; γ hp = 0.9, ghp = 0.5, respectively.

Modeling of Synaptic Inputs. In the case of map-
based models, the equation for synaptic currents can
be adopted from the known ODE models used in HH-
type simulations, but they need to be rewritten in the
form of difference equations. The simplest map-based
model for a synaptic current can be written as

I syn
n+1 = γ I syn

n −
{

gsyn
(
xpost

n − xr p
)
, spikepre,

0, otherwise,
(7)

where gsyn is the strength of synaptic coupling, indexes
pre and post stand for the presynaptic and postsynaptic
variables, respectively. The first condition, “spikepre”,
is satisfied when xpre

n ≥ α + ypre
n + β

pre
n or xpre

n−1 > 0,
i.e. when the value xpre

n is in the right-most inter-
val of function (4). It corresponds to the moments of
time when presynaptic spikes are generated. Param-
eter γ in (7) controls the relaxation rate of synaptic
(0 ≤ γ < 1). Parameter xr p defines the reversal poten-
tial and, therefore, the type of synapse: excitatory or
inhibitory. To model a synaptic delay, the implemen-
tation of condition “spikepre” in (7) is delayed from
the moment of the presynaptic spike generation by
the number of iterations corresponding to the delay
time. In this paper such a delay is not used unless it is
specified.

The effect of short-term depression in the synapse
can be achieved by supplementing Eq. (7) with an ad-
ditional variable dn that controls the strength of the cou-

pling. In this case I syn
n can be computed with a system

of two difference equations for the variables {I syn
n , dn}

given in the following form{
I syn
n+1, dn+1

}

=




{
γ I syn

n − gsyndn
(
xpost

n − xr p
)
, (1 − η)dn

}
,

spikepre,{
γ I syn

n , 1 − (1 − ρ)(1 − dn)
}
, otherwise,

(8)

where 0 ≤ η < 1 controls the depression rate by fad-
ing the synapse strength each time a presynaptic spike
is received, and 0 < ρ � 1 controls the rate of
synapse strength recovery. The initial conditions here
are {I syn

0 , d0} = {0, 1}.
Operating in the network each cell receives many

synaptic inputs. Modeling the network we normalize
the strength of each synaptic coupling gsyn by the num-
ber of synaptic inputs of the same type (inhibitory or
excitatory). We also limit the range of values in the
portion of βn representing the total synaptic currents.
This range is set to (−0.0001, 0.1) in order to ensure
the robustness of the computational scheme.

Network Geometry

Both one-dimensional and two-dimensional network
models are considered. The cortical model consisted
of a two-layer array of N PY and M IN cells, as de-
scribed in our previous studies (see, e.g. Bazhenov
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et al., 2002). The network geometry in the simula-
tions with HH neurons and map-based models were
the same. In the HH simulations N was varied between
64 and 512, and M between 16 and 128. In map-based
simulations we considered similar networks where N
and M were limited to 262144 and 65536, respectively.
In one-dimensional simulations the connection fan out
was varied between ±8 and ±32 cells for AMPA me-
diated PY-PY synapses; between ±8 and ±32 cells for
AMPA mediated PY-IN synapses; between ±2 and ±8
cells cells for GABAA mediated IN-PY synapses. The
radii of the connection footprints are noted as LPY−PY,
LPY−IN, and L IN−PY, respectively. In two-dimensional
models the radius of connection fan out was 8 neurons
(∼200 presynaptic neurons) for AMPA mediated PY-
PY synapses; 8 (∼200 presynaptic neurons) neurons
for AMPA mediated PY-IN synapses; 2 (∼12 presy-
naptic neurons) neurons for GABAA mediated IN-PY
synapses.

Data Analysis

The cross-correlation of the neuronal firing at spatially
separated network spots was computed as

C(td , k, l, k ′, l ′)

=
∑

n

(
xs

n(k, l) − xs
n(k, l)

)(
xs

n+td
(k ′, l ′) − xs

n+td
(k ′, l ′)∑

n

(
xs

n(k, l) − xs
n(k, l)

)2

(9)

where (k, l) and (k ′, l ′) are the indexes of cells located in
the center of the spots, xs

n(k, l) = ∑N
n=1(xs

n(k, l)/N ),
and N is the number of data point of xs

n used for the
analysis.

Computational Methods

All simulations with HH model neurons described in
the paper were performed using fourth-order Runge-
Kutta (RK(4)) method and in some cases embed-
ded Runge-Kutta (RK6(5)) method with time step
0.02 ms.

Results

Response Patterns of Individual Neurons

We developed map-based models capable of replicat-
ing the spiking activity observed in different types

of cortical pyramidal (PY) neurons and interneurons
(INs). Three common types of intrinsic neuronal fir-
ing patterns of cortical neurons were studied: fast-
spiking (FS), regular-spiking (RS) and intrinsically-
bursting (IB). Figure 3 compares the intrinsic neuronal
discharges found in vivo (Fig. 3A), simulated with a
Hodgkin-Huxley model (Fig. 3B) and with map-based
models (Fig. 3C). A FS neuron (Fig. 3, left) is char-
acterized by constant spiking frequency without spike
frequency adaptation over the duration of a DC pulse.
A RS neuron (Fig. 3, middle) displayed an initial higher
frequency response followed by spike frequency adap-
tation controlled by the activation of a Ca2+ dependent
K+ current. An IB neuron (Fig. 3, right panels) re-
sponded with a burst of spikes at the very beginning
of DC stimulation followed by non-adaptive spiking.
This burst is a result of the activation of high-threshold
Ca2+ and persistent Na+ currents.

These three common patterns of firing can be repli-
cated by means of map-based models. The left panel of
Fig. 3C shows the firing patterns produced by model (5)
and (6) when the map is driven by In . The parameters of
the model were set to obtain realistic shapes of the fir-
ing patterns generated by the FS cell for various levels
of the input pulse In .

The middle and right panels of Fig. 3C show the
firing patterns generated by model (3). Deceleration
of spikes in this case was achieved by means of the
parameter βe which controls the dynamics of the tran-
sients. The model parameters were set to reproduce
spike frequency adaptation and afterhyperpolarization
in RS and IB neurons found in vivo and replicated
with the corresponding Hodgkin-Huxley models. Com-
paring the time characteristics of patterns in the HH
models and the map-based models for these parame-
ter settings we estimated that one iteration of the map
corresponds approximately to 0.5 msec of time in the
HH model. This estimation has been used throughout
the manuscript to set a time scale for the map-based
models.

An increase in the amplitude of the depolarizing cur-
rent increased the firing rate of the studied neurons.
The dependency of spiking frequency on the values
of the external DC current In was used to set correct
time characteristics of the map-based models. This de-
pendency computed for the RS and FS cells is shown
in Fig. 4. These plots were obtained for the models
with small noise rn , uniformly distributed in the in-
terval (−0.01, 0.01), added to the equations of xn in
both models (xn+1 = fα(· · ·) + rn , see (3) and (6) for
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Figure 3. Intrinsic neuronal firing patterns in vivo and in the models. (A) In vivo data. (B) Hodgkin-Huxley model. (C) Map-based model.
Left panels show a fast spiking (FS) neuron; middle panel—regular spiking (RS) neuron; right panel—intrinsically bursting (IB) neuron. The
HH model is given by (1) with gNa(p) = 0.02 mS/cm2, gCa = 0.01 mS/cm2 for the FS neuron; gNa(p) = 0.046 mS/cm2, gCa = 0.035 mS/cm2,
r = 140 for the RS neuron; and gNa(p) = 0.046 mS/cm2, gCa = 0.035 mS/cm2, r = 150 for the IB neuron. The map-based model of the FS cell
is given by (5) and (6) with α = 3.8, yrs = −2.9, βhp = 0.5, γ hp = 0.6, ghp = 0.1, βe = 0.1, and amplitude of rectangular pulse A = 1.6E–2
(100%). The map-based models of the RS and the IB cell are given by (3), where α = 3.65, σ = 6.0E–2, µ = 0.0005, σ e = 1.0, β(e) = 0.133,

and A = 3.0E–2 for the RS cell; and α = 4.1, σ = −3.6E–2, µ = 0.001, σ e = 1.0, β(e) = 0.1, and A = 1.0E–2 for the IB cell. The duration
of the depolarizing pulse in the map-based simulation is 870 iterations, which is approximately 430 msec.

details). This additional noise was important to show
that the characteristics of the model are robust. It also
eliminated the fine staircase structure of the plots that
occurred due to discrete values of inter-spike intervals
in the map at fast firing rates. The firing rate of the RS

neuron was calculated based on the steady-state (after
adaptation is completed) phase of the response. Our
results are in good agreement with experimental data
(see, e.g., Fig. 6 in McCormick et al. (1985) and Figs. 8
and 9 in Mason and Larkman (1990)). A role of spike
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Figure 4. Dependence of firing rate fspikes on the level of depolar-
izing current In = IDC computed for the FS cell—panel (a) and the
RS cell—panel (b). The parameters of the maps are the same as in
Fig. 3. In (a) the solid line corresponds to the case ghp = 0.1. Val-
ues of fspikes are shown in spikes per iteration, therefore, the value
fspikes = 0.02 corresponds to the frequency 40 Hz.

adaptation in linearizing the f (I ) curve for RS neurons
was proposed in some theoretical works (Ermentrout,
1998; Wang, 1998).

Next we show the behavior of model neurons
coupled with chemical synapses. Fig. 5A displays prop-
erties of excitatory and inhibitory postsynaptic poten-
tials (EPSP and IPSP) simulated with HH models of
cortical neurons. In a pair of RS spiking neurons con-
nected unidirectionally through an AMPA-mediated
synapse, a single presynaptic spike induced a postsy-
naptic EPSP, which can lead to an action potential (see
Fig. 5A1). Another common cortical circuit includes
reciprocally connected RS and FS neurons. In such a
pair, a presynaptic spike in a RS neuron induced an
action potential in the FS interneuron that, in turn, in-
duced an IPSP in the RS cell (see Fig. 5A2).

Responses generated in the same networks of neu-
rons, but modeled with the map-based models are
shown in Fig. 5B1 and B2, respectively. Despite the
simplicity of these models, they capture the main prop-
erties of EPSP/IPSP dynamics correctly. The wave-
forms are plotted for three different strengths of the
excitatory synapse to show that the latency of the ac-
tion potential produced by the postsynaptic neuron was
reduced as the synapse strength increased. Note that a
small synaptic delay has been explicitly included into
the model to achieve a realistic timing of pre- and post-
synaptic spikes. The firing of FS interneuron inhibited
the postsynaptic RS neuron. The shape of the IPSP is
controlled by the parameters of the GABAA synapse,
γ and gsyn, of the model (7). The shape of spike after-
hyperpolarization (AHP) in the map-based model of
a FS interneuron is controlled by the parameters γ hp

and ghp see Eq. (5). Therefore, due to the inhibition
and AHP effect both neurons remain temporally hyper-
polarized after the action potential is triggered in the
interneuron.

One-Dimensional Network of Neurons

To illustrate the potential of map-based models in the
studies of network activity, we compare the behavior of
one-dimensional networks of synaptically connected
cortical neurons in HH and map-based simulations.
For the sake of simplicity, the inhibitory interneurons
were removed from the network. The AMPA medi-
ated synapses were introduced only between the near-
est PY (RS type) neurons (LPY−PY = 1). In the HH
model (Fig. 6, left panel), external stimulation initi-
ated burst of activity propagating through the network
with constant velocity depending on the strength of
synaptic coupling. Such activity has been measured
in vivo (Timofeev et al., 2000; Topolnik et al., 2003),
in disinhibited neocortical slices maintained in vitro
(Chervin et al., 1988; Chagnac-Amitai and Connors,
1989) and has been described with ODE-based compu-
tational models (Golomb and Amitai, 1997; Timofeev
et al., 2000; Golomb and Ermentrout, 2001; Bazhenov
et al., 2002; Houweling et al., 2002). Here, the increase
of intracellular Ca2+ concentration over the response
duration activated the Ca2+ dependent K+ current that
eventually terminated the burst.

Map-based models of RS cells (3) connected in
the same network using simple synaptic models (7)
demonstrated dynamics very similar to the chain of
HH model neurons (compare left and right panels in
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Figure 5. Synaptic potentials in modeled neurons. (A) Hodgkin-Huxley based model. (A1) An action potential in a presynaptic neuron induced
an EPSP when delivered through an AMPA-mediated synapse with 100% conductance strength. A spike occurred in the postsynaptic cell when
the maximal conductance was increased to 200%. (A2) Reciprocal pair of RS-FS cells. A spike in the presynaptic RS neuron induced an action
potential in the postsynaptic FS interneuron followed by an IPSP in the RS neuron. (B) Map-based model. (B1) Two RS neurons (α = 3.65,
σ = 6.0E–2, µ = 0.0005, σ e = 1.0, βe = 0.133) coupled unidirectionally with an excitatory synapse. The parameters of the synapse map were
xr p = 0.0 and γ = 0.6. Three different strengths of the synapse gsyn = gAMPA are shown. An external stimulus was used to induce a spike in
the presynaptic RS neuron. (B2) A presynaptic RS neuron excited a FS neuron, which sent a feedback IPSP to the RS neuron. The parameters
of the FS neuron were α = 3.80, yrs = −2.9, γ hp = 0.85, βhp = 0.5 and ghp = 0.27. The parameters of the inhibitory synapse (GABAA)
were xr p = −1.1, γ = 0.96, and gsyn = 5.0. The parameters of the excitatory synapse were xr p = 0.0, γ = 0.6 and the time delay was 2 msec.
Three different values of gsyn = gAMPA are shown.

Figure 6. Wave of activity in a one-dimensional chain of excitatory coupled PY (RS type) neurons. No synaptic depression is included. (A)
Hodgkin-Huxley model. (B) Map-based model (gsyn = 0.85). The parameters of the map-based models for the RS neuron and the AMPA
synapses are the same as in Fig. 5. External stimulation of cell #1 initiated a burst of activity maintained by lateral PY-PY excitation and the
persistent sodium current. Progressive activation of the Ca2+ dependent K+ current terminated the activity in each site. Note that an iteration of
the map-based neuron is about 0.5 msec of the HH model.
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Fig. 6). The similarity between the dynamics of these
model networks is persistent in a wide range of param-
eter values for the synaptic couplings. It is especially
important that the bursts in both of these systems are ter-
minated as a result of intrinsic properties of the neuron
dynamics. Note that the effect of synaptic depression
was not included in both the HH and the map-based
model simulations on purpose to illustrate the role of
individual dynamics of the cells in the formation of
realistic responses.

Here, we would like to emphasize the computational
efficiency of map-based models versus the HH models.
The numerical simulation of 2.5 sec of wave propaga-
tion in the chain of 128 neurons modeled with HH
equations (see Fig. 6, left panel, where that last 1.9 sec
are shown) took approximately 9.5 min of CPU time
(with an AMD Athlon Processor 1.6 GHz, 1 GB RAM,
Linux, GCC 3.2). The simulations of the same network,
but modeled with maps, took only 281 msec of CPU
time (with an AMD Athlon Processor 1.4 GHz, 512 MB
RAM, Windows 2000, Fortran 4.0). The results pre-
sented in the right panel of Fig. 6 were computed for a
total of 6000 iterations, where only the 4000 last itera-
tions are shown. We studied the consumption of CPU
time as a function of the size of the map-based model
chain computed for 6000 iterations. The results show
that simulation of 256 cells took 551 msec. The sim-
ulation time grew linearly with the increasing number
of cells in the network and reaches 18 min 47 sec for
the case of 131072 cells. This linear growth sustains

Figure 7. Velocity of the wave front propagation of an excitation burst in the two-layer network as a function of the coupling parameters. (A)
gPY−IN = 6 and (B) gIN−PY = 4.2. LPY−PY = LPY−IN = 50 and L IN−PY = 12. The units of the velocity are given in sites per iteration.

only if the radius of synaptic connections is kept the
same. If the number of presynaptic neurons increases
with the size of the array, then the speed of simula-
tions will reduce faster. We should also note that the
results of HH simulations shown in the Fig. 6 could be
obtained using a reduced set of ionic currents. Some
other one-compartmental models could also be used
to simulate burst propagation (see, e.g., Golomb and
Amitai, 1997; Golomb, 1998). Using these models
would speed up HH based simulations. Still we expect
them to be orders of magnitude slower than map-based
simulations. Numerical simulations of networks con-
taining hundreds of thousands of synaptically coupled
cells become quite feasible when the map-based mod-
els are used for the description of each neuron.

Velocity of the Wave Fronts and Front Modulation

To explore effects of synaptic interconnections on the
properties of propagating waves, we simulated a more
complex map-based network model including a layer
of RS pyramidal cells and FS interneurons. Similarly
to the simplified network model shown in the Fig. 6,
a stimulus triggered a wave of spiking activity prop-
agating with constant velocity and terminated by the
inhibition mediated by the interneurons (Fig. 8A). The
balance of excitation and inhibition controlled the ve-
locity of the wave front propagation (Fig. 7). The direct
increase of excitation between RS cells increased the
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velocity while an increase in feedback through the in-
hibitory circuits (RS→FS→RS) in general decreased
the velocity of wave propagation. The same effects
were previously shown with Hodgkin-Huxley based
simulations (Bazhenov et al., 2002).

Our analysis has shown that the increase of excitation
from RS to FS (gPY−IN) has three stages in the velocity
change: (1) at low values of gPY−IN the velocity did not
change with the coupling because interneurons were
silent or fired later then the RS cells located within the
inhibition footprint; (2) as the coupling increased the
interneurons fired earlier, started to inhibit the RS cells
before they fired a spike and the velocity decreased
rapidly. These two stages are in agreement with known
results obtained with HH type models (Bazhenov et al.,
2002). (3) With a further increase of the coupling the
velocity was stabilized or even grew.

The third stage is a new effect, which we found in the
simulations with map-based models. The simulations
have shown that this new effect is connected with an
instability of the wave front propagation that leads to
the onset of periodic variations of the velocity (veloc-
ity modulation), see Fig 8B. After the detailed analysis
of the parameter balance between the strength of ex-
citation and inhibition that caused the onset of such a
modulation we were able to find the same effect in the
simulations of the network with HH type models, see
Fig. 8C.

In the HH model the wave front modulation typi-
cally became apparent only after some initial transient
phase and with a sufficiently large footprint of PY to PY
connectivity. As the result, a sufficiently large 1D net-
work was required to observe this phenomenon. This
and the fact that velocity modulation in both models
was found in a relatively narrow region of parameters
(near the point where an increase of IN-PY inhibition
made wave propagation impossible), can explain why
the velocity modulation was not previously observed
in HH models. Wave propagation in 1D two-layer net-
works was explored in great details using integrate-
and-fire (IF) based models (see, e.g. Golomb and
Ermentrout, 1999, 2002). This study describes two dif-
ferent types of wave propagation: continuous pulses
and lurching waves (Golomb and Ermentrout, 2001).
In the later case relatively small clusters of neurons fired
almost simultaneously and there was significant delay
in activation times between neighbor clusters. While
the spatio-temporal pattern of lurching waves has some
similarities with the wave front modulation described
in our work, we believe that the wave modulation is a

Figure 8. Propagation of the wave front of excitation in a one-
dimensional two-layer model of interconnected PY (RS type) and
IN (FS type) neurons. (A) and (B) present the map-based model
computed for 500 iterations. (A)- propagation with constant velocity
(gPY−PY = 5.4, gPY−IN = 3.0, gIN−PY = 6.0). (B) periodic mod-
ulation of the wave front velocity (gPY−PY = 5.4, gPY−IN = 6.0,

gIN−PY = 6.0). The radii of the connection footprints are 100 RS
cells. (C) Front modulation in the Hodgkin-Huxley based network
model. The two-layer network included 512 RS and 128 FS neu-
rons. The connection fan out in the HH based model was 12 neurons
for RS-RS AMPA mediated synapses, 12 neurons for FS → RS
GABAA mediated synapses and 3 neurons for RS → FS AMPA me-
diated synapses. Each neuron was modeled by two compartments
including INa, IK, INa(p), ICa, IKCa, IKm.
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different phenomenon since there is no intermediacy
in the wave front which is typical for lurching waves
(Golomb and Ermentrout, 2001).

Transient and Self-Sustained Dynamics
in Large-Scale 2D Network

Only transient waves or persistent activities are possi-
ble in one-dimensional networks. Increasing the net-
work dimensionality may lead to new dynamics that
include self-sustained rotating spiral waves. A two-
dimensional network of sufficiently large size may be
required to maintain this activity. The need of a large
network for the onset of spiral wave activity was pre-
viously demonstrated in a HH based model of iso-
lated thalamic reticular nuclei (Bazhenov et al., 1999).
Here we confirmed this finding using a two-layer map-
based model of the cortex (Fig. 9). In a small 2D net-
work an external stimulation triggered a quasi-plane
wave which propagated through the network similar
to the wave of excitation in the 1D network (Fig. 9A,
left). As the size of the 2D network grew, the tran-
sient plane waves bifurcated into self-sustained spiral
waves (Fig. 9A, middle and right). In these simula-
tions the critical network size (the number of neurons)
that was required for the onset of self-sustained activity
depended on the footprint size of synaptic interconnec-
tions. Near the transition point the network dynamics
was usually dominated by a single spiral wave moving
randomly around the network. Given that open (flow)
boundary conditions were used, the spiral wave disap-
peared when the spiral core reached one of the bound-
aries, and the network switched to the silent state. How-
ever, further increase of the network size resulted in
the onset of more stable multi-spiral regimes (Fig. 9A,
right). Increasing the network size thus increases the
likelihood that self-sustained activity will persist in the
network indefinitely.

The properties of the waves in the 2D network were
affected by the coupling parameters. An increase of
the AMPA mediated coupling between PY neurons ex-
tended duration of the bursts and eventually lead to
a regime where prolonged up (active) states were in-
terrupted by relatively short down (silent) states. This
is illustrated in Figs. 9B and 10A. Figure 9B shows
snapshots of the RS cells activity in the network for
3 different values of the excitatory coupling; Fig. 10A
displays voltage traces from 2 nearby RS cells and the
average activity of 100 (10 × 10) cells in the center
of the network for the regime shown in Fig. 9B (right

panel). Here we would like to emphasize that the tran-
sitions between up and down states of this activity were
not initiated by any external stimuli. These transitions
were the result of the intrinsic network dynamics. This
network behavior is reminiscent of slow wave sleep
oscillations—a periodic (<1 Hz) activity found during
natural sleep or under anesthesia (Steriade et al., 1993a,
1993b, 2001; Timofeev et al., 2001b).

A reduction of the inhibitory feedback in the net-
work either by reducing the PY-IN excitation or IN-PY
inhibition led to an increase in burst duration. Since the
wave front duration sets the spatial scale of a system, the
increase of burst duration is equivalent to a reduction of
the networks effective size. Therefore, these changes of
synaptic strength decreased the maximal number of co-
existing waves accommodated in the network, thus in-
creasing the likelihood of a sudden termination of self-
sustained activity. This effect is illustrated in Fig. 11
that shows an intensity plot of action potentials for a
row of RS neurons (the row which is situated at the cen-
ter of the 2D network) and the voltage trace of a RS neu-
ron located in the center. These plots show the network
dynamics starting at the moment of time when the IN-
PY inhibition in the network with stable self-sustained
oscillations was reduced from gIN−PY = 0.1 µS to
gIN−PY = 0.05 µS (at time t = 0).

Depolarization of cells in the network to the level
of spontaneous firing was another way to terminate
wave dynamics. This was achieved in the model by
increasing the parameter σ in the RS neurons. Accord-
ing to the f (I ) diagram shown in Fig. 4, the cells start
to fire spontaneously for IDC > 0.5. Slightly above
this threshold, the wave structure was still observed
but was superimposed with spontaneous random activ-
ity (Fig. 9C, left). Further depolarization created ran-
dom states with individual neurons firing constantly
(Fig. 9C, middle and right) which is reminiscent of
cortical activity in the awake state. Voltage traces
of two RS neurons and the average (over 100 RS
cells) activity are shown in Fig. 10B. One can see
that neurons fired steadily and without synchrony ex-
cept for brief time periods when synchrony increased
transiently.

Qualitatively different states of the network activ-
ity shown in Fig. 9 were characterized by distinct cor-
relation properties of the oscillations. Figure 12 (left
column) shows the cross-correlations between two RS
neurons separated by distance D and evaluated for an
interval of time delays td from −1000 to 1000 itera-
tions (see Methods). The figure also shows a similar
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Figure 9. Waves in 2D networks of PY (RS type) and IN (FS type) neurons (NFS = NRS/4) coupled through excitatory and inhibitory synapses
with short-term depression. (A) Only transient waves were found in a relatively small (NRS = 6400) network (left); as the network size increased
(NRS = 25600, NRS = 65536) the bursting activity persisted in a form of rotating spiral waves (middle, right). In all simulations the radius of
connection fan out was 8 neurons (∼200 presynaptic neurons) for AMPA mediated RS-RS synapses; 8 neurons (∼200 presynaptic neurons) for
AMPA mediated RS-FS synapses; 2 neurons (∼12 presynaptic neurons) for GABAA mediated FS-RS synapses. (B) An increase of the strength
of excitatory coupling between PY neurons transformed the patterns of activity with well separated spirals (left) into the regime dominated
by firing cells (right). (C) An increase of the parameter σ depolarized the neurons above the threshold for spontaneous firing. This created an
activated network with neuronal behavior similar to the one recorded during waking state or REM sleep.

correlation plots, but computed with the waveforms
of the field potential xs

n in the spots of a footprint of
8 × 8 cells (right column). For the sake of simplicity
we showed the intensity plots of C(td , k, l, k ′, l ′) mea-

sured along a vertical line in the middle of the network,
i.e. k = k ′ and l = l ′ + D.

The main hump of the cross-correlation function
centered at td = 0 and D = 0 has specific shapes for
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Figure 10. Activities of individual neurons in different network states. (A) Two representative traces of PY cells and averaged network activity
(10 × 10 group in the middle) from the network shown in Fig. 9B, right. A transition between up and down states is similar to activity recorded
during slow wave sleep oscillations. (B) “Voltage” traces and averaged activity for the network in the activated state shown in the Fig. 9C, right.
The network displays brief epochs with transient increase in coherence.

Figure 11. Termination of self-sustained wave dynamics caused
by the reduction of inhibition gIN-PY in the 2D network. The time
evolution for a line of RS cells is shown in the intensity plot. The
reference time interval is in iterations, where 1000 ∼ 500 msec.

these three cases. In Fig. 12A (narrow waves, Fig. 9A,
right), it is wide in both directions (delay and distance)
and periodically modulated. In Fig. 12B (wide waves,
Fig. 9B, right) it has an extended shape along the co-
ordinate D. In these two cases the correlation in space
is caused by the presence of synchrony along wave-
fronts.

In the case shown in Fig. 12C (active state, Fig. 9C,
right) the hump is very sharp in both td and D directions.
Fast decay of the cross-correlations with a distance be-
tween RS neurons found upon network depolarization
(Fig. 12C, left) is typical for activated states, which
are characterized by minimal correlations of the spike
discharges of neighboring neurons (Noda and Adey,
1970). Although the peak of the cross-correlation func-
tion in this case is very sharp, the fluctuations of the
function at low levels of correlation revealed interest-
ing structure, which can be clearly seen on the plot
computed for the averaged signals. This structure ap-
peared as a wide cloud that is periodically modulated

in td with frequency, at about 40 Hz (Fig. 12C, right).
This frequency structure occurred due to occasional
increases in spiking synchrony within local groups of
neurons. This effect is clearly seen with the analysis of
power spectra of waveforms presented in Fig. 13. The
left panels of this figure show zoomed fragments of ac-
tivity in a representative RS cell and averaged activity
in a group of 100 RS cells. The power spectra of these
activities are shown in the right panel. One can see that
although the oscillations in a single RS cell may look
almost periodic in the left panel, the power spectra of
these oscillations distributed over a range of frequen-
cies and do not have any sharp peaks. At the same time
power spectra for the traces of the field potential (aver-
aged activity over 100 RS cells) contains a very sharp
peak in the range of 40–45 Hz.

Discussion

Currently the most realistic approach for the simulation
of neuronal behavior is based on HH type modeling
(Hodgkin and Huxley, 1952). With this approach each
ionic current is described with voltage-dependent open-
ing and closing rates for the gating variables. Knowing
these rate functions for all currents found for a partic-
ular cell type allows one to describe the neuron behav-
ior precisely. However, only very few cell types (e.g.,
LP neuron of stomatogastric ganglion (STG) system
(Golowasch and Marder, 1992)) have been described
in detail. The most common computational approach
involves the simplification of a neuron model to one
or two compartments and the use of the minimum set
of ionic currents required to reproduce particular fea-
tures of neuronal behavior. Examples of successful HH
type models based on this reduced approach include
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Figure 12. Cross-correlation C(td , k, l, k′l ′) of activities in two neurons (left column) and two spots of 64 neurons (right column) located at
k = k′ = l = 125 and analyzed as a function of distance D = l ′ − l and delay time td . Three distinct cases of network activity are shown: (A)
state of multiple spiral waves considered in Fig. 9A right; (B) corresponds to Fig. 9B, right; (C) corresponds to Fig. 9C right. Values of td are
given in iterations, 1000 iterations correspond to 500 msec.

cortical cell (Mainen and Sejnowski, 1996; Golomb
and Amitai, 1997; Golomb, 1998; Bazhenov et al.,
2002; Houweling et al., 2002), thalamic relay
(Destexhe et al., 1996; Bazhenov et al., 1998, 2000)
and reticular (Destexhe et al., 1994a, 1996; Bazhenov
et al., 1999) cells, hippocampal neurons (Traub et al.,

1996, 1997), antennal lobe neurons (Bazhenov et al.,
2001a, 2001b), and many other models. Unfortunately,
the high dimensionality and complexity of the nonlin-
ear functions of HH models hamper their application
in the simulation of large-scale networks containing a
realistic number of neurons.
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Figure 13. Oscillations in the map based network model. Fragments of the traces from Fig. 10B present the individual oscillations of one RS
cell and the averaged activity over a group of cells in the network state shown in Fig. 9C (σ = 0.3). The power spectra of such traces averaged
over 100 RS cells show a sharp peak of power at relatively low frequencies of the field potential (40–45 Hz), right panel.

Another class of models, commonly used when
large-scale simulations are needed, is integrate and fire
(IF) models (Stein, 1967; Knight, 1972a; Tuckwell,
1988). In the IF model a neuron simply integrates its in-
puts and generates a spike when a threshold is reached.
After the spike, the membrane voltage is reset to zero.
This is followed by a refractory period in which spik-
ing is impossible. The disadvantage of IF models is
that the firing patterns are oversimplified and do not
describe the range of experimental data. Generaliza-
tions of this simple model include leaky IF models that
introduce a leak term in the dynamics of the subthresh-
old membrane voltage and integrate-and-fire-or-burst
neuron models that reproduce rebound bursting ob-
served in some cell types (Smith et al., 2000; Casti
et al., 2002). These IF models have been successfully
applied to model firing behavior of the Limulus eye
neurons (Knight, 1972b), α-motoneurons (Calvin and
Stevens, 1968), neurons in the visual system of the
housefly (Gestrin et al., 1980), cortical neurons (Softky
and Koch, 1993; Troyer and Miller, 1997), and thalamic
relay neurons (Smith and Sherman, 2002). However,
the generalizations of the IF models that help to de-
scribe the realistic firing patterns increase the complex-
ity of the IF-based model and reduce the speed of com-
puter simulations. One exception is the recently pro-
posed model by Izhikevich (Izhikevich, 2003) which
is designed in the form a two-dimensional system of
ordinary differential equations and allows to replicate
a variety of firing patterns.

A class of even simpler models includes phase os-
cillators (Hoppensteadt and Izhikevich, 1996, 1998;
Crook et al., 1997; Williams and Bowtell, 1997;
Sigvardt and Miller, 1998; Corchs and Deco, 2001,
Ermentrout et al., 2001; Cang and Friesen, 2002), the

theta-neuron (Gutkin and Ermentrout, 1998; Longtin
et al., 2002) and some other similar models. Those
models, however, are not capable of producing a real-
istic range of experimentally observed firing patterns.

HH based models are preferable in those studies
where desirable effects can be obtained in scaled-down
network models. For example, thalamic delta (2–3 Hz)
oscillations arise as an interplay of a few specific cur-
rents (low-threshold Ca2+ current (IT ) and hyperpolar-
ization activated cation current (Ih)) and can be studied
in a single cell model (Lytton et al., 1996). Thalamic
spindle (7–14 Hz) oscillations are a result of interac-
tions between thalamic relay and reticular cells and
were successfully studied in models including just a
few cells (Destexhe et al., 1994a, 1996; Golomb et al.,
1994, 1996; Contreras et al., 1996; Bazhenov et al.,
2000; Timofeev et al., 2001a). However, there are dy-
namical properties, which are observed only in suffi-
ciently large networks. An important example of such
dynamics is slow-wave sleep (SWS) oscillations—
low-frequency (0.3–1 Hz) rhythms dominating corti-
cal activity during natural sleep and under some types
of anesthesia (Steriade et al., 1993a, 1993b, 2001;
Timofeev et al., 2001b). Recent studies have reported
that slow wave sleep may be essential for memory con-
solidation and memory formation (Gais et al., 2000;
Stickgold et al., 2000). It was proposed that periodic
SWS-like network behavior can be observed only if
the network of neurons exceeds some large critical size
(Timofeev et al., 2000; Bazhenov et al., 2002).

In this study, we developed map-based neuronal
models which are capable of reproducing many specific
firing patterns observed in different neuronal classes
(intrinsically bursting, regular spiking and fast spik-
ing cells). The map-based models can generate more
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realistic responses than a conventional IF model, yet
it can be simulated much faster than HH-based mod-
els. Specific features of a neuron firing patterns (such
as effects of AHP, spike adaptation, rebound depolar-
ization, etc.) can be simulated in the map-based model
without a decrease of its computational efficiency by
setting the proper parameter values. The disadvantage
of this approach, however, is that (as opposite to HH-
based models) there is no direct relation to the phys-
iological properties of the neuron. The replication of
specific firing patterns requires tuning of parameters
based upon the phenomenological properties and some
patterns may be difficult to reproduce without a signif-
icant change of the model equations. Because of the
discrete nature of the map-based model, the choice of
the time scale is not straightforward and it should be
set to be consistent with the time scales of fast and slow
dynamics which depend of the other parameters of the
map.

The new neuron models were applied to study the
collective behavior in one- and two-dimensional net-
work models. In the one-dimensional network model
a stimulus created a wave of excitation; its velocity
depended on the network parameters (Fig. 7) and this
dependence was found to be similar to that previously
described using a Hodgkin-Huxley based approach
(Bazhenov et al., 2002). A wave propagated through
the network and disappeared at the ends of the network.
With strong enough inhibitory feedback the inteneu-
rons in the network fired first at the front of the wave
in agreement with previous theoretical works (Golomb
and Ermentrout, 2002). Plane traveling waves of elec-
trical activity were described in different experimental
studies including electrical waves in the olfactory lobe
of the terrestrial mollusk Limax (Delaney et al., 1994;
Kawahara et al., 1997) and in the visual cortex of awake
cats (Roelfsema et al., 1997).

Simulations with large scale two-dimensional net-
work models of interconnected RS and FS cells re-
vealed self-sustained dynamics that consisted of in-
teracting spiral waves moving randomly around the
network. This behavior was not a function of spon-
taneously firing cells but a network property and de-
pended on the synaptic interaction between neurons.
Dynamical mechanisms responsible for terminating
the network activity in particular foci included inhi-
bition that was mediated by local interneurons, spike-
frequency adaptation and synaptic depression. Suffi-
ciently large networks supported close to periodic sta-
ble dynamics similar to activity found during slow

wave sleep. Self-sustained rotating spiral waves medi-
ated by chemical coupling between neurons have been
previously described using HH approach (see, e.g.,
Bazhenov et al., 1999). Thus, two-dimensional net-
work models designed using the map-based approach
are capable to replicate complex spatio-temporal pat-
terns found in conductance-based simulations.

The spiral waves described in our study are simi-
lar to the ones observed in general reaction-diffusion
systems, which may display spiral patterns near the
point of bifurcation from spatially-homogeneous solu-
tions (Kuramoto, 1984). One example of spiral wave
activity in a biological system is cardiac arrhythmias
which are initiated by spiral waves of electrical exci-
tation in heart cells (see, e.g., Winfree, 1987). In this
system, however, local electrical coupling is required to
maintain spiral waves, which leads to the same mech-
anism of propagation as in the reaction-diffusion sys-
tems. In our cortical network model, the mechanisms
promoting pattern formation did not depend on hav-
ing local interconnections between cells. Experimen-
tal support for the existence of rotating spiral waves in
neural networks has been provided recently in optical
imaging studies of the neuronal activity in turtle visual
cortex (Prechtl et al., 1997). A computational model
including cortical and thalamic relay neurons was de-
signed to study wave propagation in the turtle visual
cortex (Nenadic et al., 2002, 2003). It has been pro-
posed that traveling electrical waves may serve several
computational functions including labeling of stimulus
features perceived simultaneously with a unique phase
(Ermentrout and Kleinfeld, 2001).

Conclusion

The nonlinear maps produce a rich spectrum of dy-
namical behaviors while remaining simple and low-
dimensional systems; they can, therefore, be very com-
putationally efficient. Individual map-based neurons
can be connected through conventional chemical and
electrical synapses so as to simulate a realistic network
structure. The parameters of model can be adjusted to
precisely match experimental data. Specific types of
thalamic and cortical neurons including thalamic relay
and reticular cells, cortical fast spiking, regular spiking,
intrinsically bursting and fast-rhythmic-bursting (chat-
tering) neurons can be modeled using this approach.
At the same time, the simulations conducted with the
map-based model can be orders of magnitude faster
than those based on the Hodgkin-Huxley approach.



Novel Model for Study of Large-Scale Networks 221

These results suggest that the new model, which we
propose, can be widely used to study diverse processes
(such as, e.g., information coding or pattern formation)
in large-scale thalamic and cortical networks.
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