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Abstract

Neural circuits exploit numerous strategies for encoding information. Although the functional significance of individual
coding mechanisms has been investigated, ways in which multiple mechanisms interact and integrate are not well
understood. The locust olfactory system, in which dense, transiently synchronized spike trains across ensembles of antenna
lobe (AL) neurons are transformed into a sparse representation in the mushroom body (MB; a region associated with
memory), provides a well-studied preparation for investigating the interaction of multiple coding mechanisms. Recordings
made in vivo from the insect MB demonstrated highly specific responses to odors in Kenyon cells (KCs). Typically, only a few
KCs from the recorded population of neurons responded reliably when a specific odor was presented. Different odors
induced responses in different KCs. Here, we explored with a biologically plausible model the possibility that a form of
plasticity may control and tune synaptic weights of inputs to the mushroom body to ensure the specificity of KCs’ responses
to familiar or meaningful odors. We found that plasticity at the synapses between the AL and the MB efficiently regulated
the delicate tuning necessary to selectively filter the intense AL oscillatory output and condense it to a sparse
representation in the MB. Activity-dependent plasticity drove the observed specificity, reliability, and expected persistence
of odor representations, suggesting a role for plasticity in information processing and making a testable prediction about
synaptic plasticity at AL-MB synapses.
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Introduction

Neuronal circuits implement a variety of coding strategies that

differ in their reliance on precise timing and correlations between

action potentials (‘‘spikes’’). Among these strategies are oscillations,

synchronization and precise spike timing on the one end of the

spectrum; population codes and firing rate changes on the other

one [1–6]. The functional significance of these distinct coding

strategies has been investigated in different sensory modalities, yet

their interaction and integration within neural systems remains an

open question in the theory of neural coding. One reason for this is

that it is generally not possible to make direct and precise

experimental observations of the interplay between information

flow and neural circuitry at different levels of sensory processing.

A notable exception is provided by the invertebrate olfactory

system, where the relationship between oscillatory synchronization

and sparse codes, the role of neuronal plasticity, coincidence

detection and oscillatory synchronization have been investigated

both experimentally [6–8] and with realistic computational models

[8–11].

The oscillatory activity reflected in electroencephalogram (EEG)

and local field potential (LFP) recordings has been associated with

sensory processing [1–3,12] and cognitive states in humans [13–

15]. The biophysical and network mechanisms underlying

oscillatory activity in the brain have been well characterized,

and involve periodic coherent synchronization of neuronal

assemblies [3,10,16,17]. In particular, in the antenna lobe (AL)

of the locust [3] (the analog of the vertebrate olfactory bulb),

oscillatory synchronization is a feature of population coding.

During the presentation of an odorant, transiently synchronized,

evolving ensembles of neurons are formed and together participate

in the encoding of the odor [3,10,11].

The significance of the AL’s odor oscillatory coding scheme can

be best understood by examining postsynaptic units that read the

oscillatory output. In insects, these follower units include neurons

in the mushroom body (MB), a structure known to be involved in

the storage and retrieval of memory representations [18–20]. In

locusts, although a large fraction of the 830 AL projection neurons

(PNs) participates in a dense and dynamic oscillatory response,

only a very small subset of the 50,000 Kenyon cells (KCs) in the

ipsilateral MB actively responds to any single odor [7]. Individual

KC responses are rare and consist, on average, of only a few action

potentials. Thus activity in the MB is sparse [7], and population

codes mediating odor representations differ markedly between AL

and MB. Similarly, studies in mice have shown that individual

odorants are represented by subsets of sparsely distributed cortical

neurons [21].

The transformation of odor responses from AL to MB requires

the tendency of PNs to synchronize through oscillatory dynamics,

the ability of KCs to respond as coincidence detectors, activated
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only by correlated input from the AL [7,8], and a precisely and

actively tuned match between coding and decoding processes.

What mechanisms underlie this match and enable the appropriate

selection of coherent oscillatory signals, fundamental for reading

the information contained across synchronized PN spike trains?

A form of activity-dependent plasticity between AL and MB

may provide the necessary fine-tuning for ensemble selection in

the MB, as well as a substrate to shape persistent sparse odorant

representations. We explored this hypothesis here with a

biologically plausible computational model. This model includes

the main processing steps of the insect olfactory system, but was

designed to be general enough to allow comparisons to vertebrate

olfaction and to sensory processing in other brain areas. Two

different forms of dynamic regulation of synaptic strength were

compared, one based on the precise millisecond timing of

individual spikes [22–24] and a second that depended on the rate

of spike occurrence averaged over longer intervals [25,26]. We

found that plasticity can efficiently tune the selectivity for

synchronized input, generating sparse, reliable and persistent

representations to familiar or meaningful odors in the MB. Finally,

we found the model makes an experimentally testable prediction

about plasticity mechanisms governing synapses to KCs. Although

this model is focused on the locust olfactory system [7],

electrophysiological recordings and theoretical considerations

suggest that sparseness could be a ubiquitous coding strategy

exploited by several different modalities across different organisms

(reviewed in [5]). Thus, this relatively simple system constitutes a

favorable model for studying the interplay of neural codes with

plastic mechanisms of learning and memory.

Results

Synaptic Plasticity in the Mushroom Body
In insects, projection neurons (PNs) of the antennal lobe (AL)

are the only source of olfactory information to the mushroom body

(MB). We focused on the effects of plasticity at the synapses

connecting PNs to Kenyon cells (KCs) in the MB calyx (Figure 1).

Each synapse was characterized by a nonnegative peak conduc-

tance g, and synaptic plasticity was realized as a change in g by the

amount Dg, proportional to three independent factors:

(1) Lr
6: the learning rule factor

(2) Ci: linear function of instantaneous synaptic conductance

(3) Fp: binary function of pairing frequency

Dg ~ L+
r

. Ci . Fp ð1Þ

Learning rules based on spike rate- or spike timing-dependent

induction of synaptic plasticity are central in influential models of

cortical learning and neural development [22–26]. We investigat-

ed the contributions of rate- and timing-based mechanisms in the

MB with a series of computational experiments. Specifically, we

compared spike-timing dependent plasticity (STDP; Figure 1C)

with a form of plasticity that depends on the rate, but not precise

timing, of pre- and postsynaptic firing (Figure 1A and 1B). By

analogy with STDP [27], we termed this spike-rate dependent

plasticity (SRDP).

In most of our computational experiments, we compared the

effects of SRDP and STDP at the PNs-to-KCs synapses

(Figure 1E). For each experiment, the population response in

KCs was quantified before (‘‘naive’’ case; e.g., Figure 2D) and after

training (e.g., after STDP: Figure 2E) over repeated presentations

of blocks of olfactory stimuli (see Materials and Methods).

Our simulations were based on small populations of conduc-

tance-based KCs receiving input from 100 PNs (i.e., ,12.5% of

total locust PN population). Each model KC received monosyn-

aptic input from 10 PNs [7]. To reduce the likelihood of

facilitating sparseness by independent connectivity, pairs of KCs

shared 50% of their input afferents [8]; an extra overlap that did

not otherwise affect the results. Following an approach that we

previously applied in [8] the PN activity of the model (Figure 2B;

see Materials and Methods) included dynamic ensembles of

synchronized neurons replicating the behavior of PNs recorded in

vivo (Figure 2A) [7,28,29] as well as of PNs in a complete AL model

[9,10].

Synaptic Plasticity Enhances Sparseness and Selectivity of
Olfactory Representations in KCs

Before olfactory experience, stimulus-evoked response patterns

in the MB were dense, with olfactory representations characterized

by the participation of a large fraction of the available KCs (often

.25%; Figure 3A, left column). Most neurons fired less than one

spike per trial (see spike raster in Figure 2D); thus, reliability was

low. Population responses were unselective and largely overlap-

ping across different odors (Figure 3A, left column). Both

learning mechanisms made KCs population responses sparser

(Figure 3A, middle and right column), such that in most cases only

one KC became specifically responsive to a given odor. After

olfactory experience with SRDP or STDP over 3 blocks of

presentations (150 trials in all), on average, only a few KCs

Author Summary

The way in which the brain encodes, processes, transforms,
and stores sensory information is a fundamental question
in systems neuroscience. One challenge is to understand
how neural oscillations, synchrony, population coding, and
sparseness interact in the process of transforming and
transferring information. Another question is how synaptic
plasticity, the ability of synapses to change their strength,
interacts efficiently with these different coding strategies
to support learning and information storage. We ap-
proached these questions, rarely accessible to direct
experimental investigation, in the olfactory system of the
locust, a well-studied example. Here, the neurons in the
antennal lobe carry neural representations of odor identity
using dense, spatially distributed, oscillatory synchronized
patterns of neural activity. Odor information cannot be
interpreted by considering their activity independently. On
the contrary, in the mushroom body—the next processing
region, involved in the storage and retrieval of olfactory
memories and analogous to the olfactory cortex—odor
representations are sparse and carried by more selective
neurons. Sparse information coding by ensembles of
neurons provides several important advantages including
high memory capacity, low overlap between stored
objects, and easy information retrieval. How is this
sparseness achieved? Here, with a rigorous computational
model of the olfactory system, we demonstrate that
plasticity at the input afferents to the mushroom body can
efficiently mediate the delicate tuning necessary to
selectively filter intense sensory input, condensing it to
the sparse responses observed in the mushroom body.
Our results suggest a general mechanism for plasticity-
enabled sparse representations in other sensory systems,
such as the visual system. Overall, we illustrate a
potential central role for plasticity in the transfer of
information across different coding strategies within
neural systems.

Synaptic Plasticity and Sparse Codes
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developed sensitivity to a given odor leading to a sparse

representation for that odor. This was mainly a result of the odor

specific decrease in synaptic weights from AL to MB during

learning with repeated odor trials. After learning, only few cells

received a combination of the PN inputs that was sufficient to

trigger a postsynaptic spike.

Odor induced sparse responses in KCs usually involved a single

spike (e.g., Figure 2E, and Figure 3 middle and right column).

Even though all the odors were generated by the same stochastic

process, there were a few exceptions: for odors 3 and 8 no KC

became specific. Population sparseness was increased in odor 7,

without reaching single cell specificity. The lack of specific

response in these simulations likely arose because only a small

fraction of all PN combinations had real KC targets in our model.

Similarly, a single experiment in vivo sampling only a fraction of the

total KC population may reveal no responses to a given odor [7].

Overall, odor representations were significantly sparser after

synaptic tuning through SRDP (p,0.0002, paired t-test on

Figure 1. Synaptic plasticity and coincidence detection in the model Kenyon cell. (A) The SRDP rule was applied every 100 ms (large box
over dashed time grid, see Materials and Methods). For each KC spike within that window, the instantaneous PN firing rate was estimated in the
preceding 100 ms (small box; for this potentiation example: 3 spikes, or 30 Hz). (B) SRDP learning rule look-up table for potentiation (white),
depression (light gray), and no change (dark grey), embodying the interaction of a PN discrete covariance term and a KC binary term. Axes indicate
spike counts in 100 ms windows, as exemplified in A. (C) The pairing time window for STDP was determined by two exponentially decaying functions
critically depending on the timing difference between the onset of the excitatory postsynaptic potential (EPSP) and the peak of the postsynaptic
action potential. (See Materials and Methods; from [57]. Copyright 1998 by the Society for Neuroscience. Reprinted with permission.) (D) Linear
dependence of synaptic change on instantaneous synaptic strength (factor Ci, Equation 1). Values normalized by the initial conductance g*. (E)
Representative connection between a PN axon (black) and a KC dendritic tree (gray) in the MB calyx (light gray). (From [7]. Reprinted with permission
from AAAS.) (F) Gaussian distributions of increasing width ( = 26STD, abscissa) generated input trains of 10 spikes with decreasing probability of
triggering a KC spike (see also [G]). Probability was higher than 50% for widths of 18 ms or less (dashed line). (G) Input combinations generated in (F)
resorted according to the actual interval between first and last spike (range). Coincidence detection events (KC spike; black bars, 2-ms steps)
predominated against non-firing combinations (gray bars) for ranges up to 26 ms (upper panel: total count; lower panel: relative count). Coincident
spikes within a 20 ms range were always detected.
doi:10.1371/journal.pcbi.1000062.g001
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sparseness measures, see Materials and Methods; Figure 3B) and

STDP (p,0.0003) compared to the naive case. In general, both

SRDP and STDP mechanisms were able to tune the synapses

between PNs and KCs such that KC responses to different odors

were specific, sparse and reliable across trials.

Synaptic Tuning
We next asked whether plasticity could tune synaptic strengths

for a wide range of initial conductance values at KC synapses.

Training experiments were performed over 4 blocks of stimuli,

starting from different values of initial conductance that were

derived from the 100% reference value used for all other

experiments (see Materials and Methods). When initial conduc-

tance was increased, naive responses became denser: more and

more KCs were recruited in the stimulus-induced population

firing, and most KCs started to fire repeatedly during a single odor

trial (Figure 4A, left column). Training with either SRDP or STDP

made the population response much sparser (Figure 4A, mid and

right column). Even for initial conductances in the 130–140%

range, almost all neurons involved in the response fired a single

spike after olfactory experience, whereas more than half of the KC

population remained silent for all odors. For example, across all

odor samples, the sparseness measure at 130% was significantly

different from the naive case for both SRDP (p,0.0001; paired t-

test) and STDP (p,0.0001; Figure 4A, bottom row). In general,

population sparseness across all odors decreased linearly with

increasing initial conductance in the naive case (Figure 4B). Yet

both rate- and timing-dependent plasticity mechanisms produced

the same near maximal sparseness, with somewhat lower

sparseness when initial conductances exceeded 120%. Thus,

activity-dependent synaptic tuning is able to normalize postsyn-

aptic neuronal responses over a wide range of initial conditions,

and can do so without a global scaling signal [30,31]. Additionally,

this finding strongly mitigates the choice of initial synaptic

strengths for computational models incorporating synaptic mech-

anisms with forms of plasticity analogous to SRDP or STDP: such

models require less fine-tuning to work well. Finally, these forms of

synaptic plasticity appear to favor a sparser code within a neuron

population of fixed size, thereby increasing the global storage

capacity of the system [5]. We therefore asked whether the system

is able to respond precisely and sparsely to additional odors after

being trained by one odor.

The Persistence of Olfactory Representations
Once generated, an olfactory representation should not only be

reliable whenever activated by the same odor (Figure 3), but

should also be reproducible after training with other odors. When

plasticity is active, representations risk corruption by exposure to

new odors and by ongoing activity. We compared the ability of

SRDP and STDP to tune synaptic strengths such that multiple

odor representations could coexist in a stable manner within a

fixed pool of KCs. In doing so, we did not assume that odor

memories are stored exclusively at the AL-MB synapses, nor did

we aim to fully characterize the degree to which representations

are protected against degradation. Rather, we tested whether an

activity dependent tuning mechanism is compatible with multiple

coexisting representations. Other mechanisms not further ex-

plored here may collectively support long-term memory retention

[32].

We trained simulated olfactory circuits on four different odor

blocks (odors 1, 2, 3, 4) delivered in various sequences (Figure 5).

Each sequence consisted of 200 1-s trials in total, each odor block

contributing the same 50 trials to every sequence. The sequences

were labeled 1234, 2143, 3412 and 4321, indicating the order in

which each odor block was presented. In an additional sequence,

the 200 1-s trials were randomly permuted. After the training

period, each model circuit was tested as usual on a single odor

block, without modifying synaptic strengths.

To quantify the extent to which a given odor representation

(e.g., odor 2) acquired during training from a sequence (e.g., 1234)

deviated on average from the representation obtained without

presentation of other odorants, we computed its Euclidean

distance (in KC odor space, see Materials and Methods) from

the average response after training with the test odor alone (e.g.

2222). A null distance indicated perfect response matching. For

reference, the average pairwise distance between representations

obtained after training with a single odor (Figure 3A, 8 odor-

specific responses) was 1.360.9 for SRDP and 2.761.7 for STDP.

After SRDP- or STDP–based training with the multiple odor

sequences, the observed KC population responses to single odors

were significantly more sparse than in the naive case, and

comparable across different sequences (SRDP: F = 12.66, df = 12,

p,0.0015; STDP: F = 15.12, df = 17, p,0.0001; 1-way analyses of

variance).

Olfactory representations for single odors acquired during

training with STDP on multiple sequences had firing patterns that

were very similar to those observed after learning each odor alone

(Figure 5). The random sequence was less effective at producing

reliable odor representation, indicating that repeated consecutive

presentations of 1-s trials from the same odor are needed to form a

more stable representation. Exposure to odors not included in the

training sequences (e.g. odors 5, 6, 7, 8, in Figure 3) in one case

reproduced the expected pattern with remarkable similarity (odor

6, Figure 5). For the other odors, the responses after olfactory

experience remained similar to their respective naive case (not

shown). These results suggest that training by a set of odors

presented even in random sequences could tune the system and

lead to high KCs specificity for each of them. What is important is

an extensive ‘‘coverage’’ of the odor space by the set of odors used

for training. Thus, training by a set of similar odors can leave some

of AL to MB afferents unchanged, so the following presentation of

another ‘‘different’’ odor may lead to a non-sparse response. In

Figure 2. AL and MB population codes. (A) Firing patterns of 10 PNs for 2 different odors in vivo. Each odor (horizontal bars, 1 s) was presented
15 times (raster plot). (B) Firing patterns of 20 modeled PNs are shown for two different odors. Each box represents activity for one PN. Each stimulus
(horizontal bars, 1 s) was presented 20 times and included small variations between trials. Approximately one-half of the inputs were synchronized at
each oscillation cycle, and identities of the synchronized inputs changed slowly over the stimulus duration (see Materials and Methods). (C) Typical AL
timing structure; input spike trains to one KC from 10 PNs (rows) during 1-s odor presentation (1 block of stimuli: 50 trials with the same odor).
Consecutive boxes on each row represent the spike raster of a PN for each cycle (50 ms) of the 20 Hz LFP oscillation. Pink boxes indicate PN-cycle
combinations of reliable synchronous spiking across trials (aligned spikes; STD,5 ms); i.e. the instantaneous PN ensemble exhibiting oscillatory
synchronization in the corresponding cycle. Yellow boxes indicate PN-cycle combinations with spiking activity without synchrony. Empty boxes
indicate silent cycles. Synchronized PNs may be assumed phase-locked to the positive peak of the LFP oscillation. (D) Quantification of KC population
response before learning (naive). Spiking activity of all 19 KCs (left panel) during 50 presentation trials of the same odor. The corresponding spike
count bar plot is shown in the right panel. (E) Quantification of KC population response after learning with STDP. Note the increasing level of
sparseness in the KC population. Procedure as in (D).
doi:10.1371/journal.pcbi.1000062.g002
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contrast, a set of more distinct odors would tune the whole system

for all possible inputs including those not used for training. This

‘‘tuning’’ with even an impoverished set of odorants could occur at

early stages of development. This result suggests some behavioral

consequences, e.g., animals growing in a very stable and poor odor

environment should show poor performance in discriminating

among similar odors if these odors belong to a novel (for that

animal) chemical group.

We found that the rate-based learning rule was less successful in

storing multiple odors. Exposure to a single odor after olfactory

experience with multiple odor sequences with SRDP induced

firing patterns with mixed degrees of similarity to those expected

and observed after training with a single odor (Figure S1). The

expected pattern was reproduced only in 44% of the tested

samples. The remaining combinations either yielded ‘‘wrong’’

patterns (13%) or did not elicit any reliable response. In some

cases, odor sequence training induced a KC to become specific to

an odor to which it was not responding when trained on the same

odor alone (e.g., sequence 1234 tested with odor 2; Figure S1).

Interestingly, the best reproductions of the expected, single odor-

trained olfactory representation were observed when presenting

the first odor of each training sequence, e.g. odor 1 for 1234, odor

2 for 2143, etc., indicating that under SRDP the first odor in the

sequence had a major effect on the synaptic strengths of KCs. Also

in the SRDP case, the random sequence did not induce any

significant persistent odor representation.

Finally, exposure under SRDP to odors not included in the

training sequences did not reproduce the original patterns, and

responses were often characterized by widespread silence. Thus,

although the two learning rules performed similarly in the previous

experiments, the results with odor sequences indicate that synaptic

changes induced by STDP are more specific and less disruptive

than SRDP, allowing persistent coexistence of multiple olfactory

representations. This result can be explained in part by the more

significant alternations of synaptic weights observed with SRDP

model (see below). Note that the performance difference between

the two plasticity models cannot be equalized by modifying the

model parameters to reduce synaptic changes associated with

SRDP. Such a change would actually decrease the SRDP model

performance in experiments with single odor presentations.

It is important to emphasize a difference between olfactory

stimuli and other modes of sensory input, e.g., visual. In our

model, each odor stimulus could be considered a sequence of

independent pulses or bins, each bin corresponding to one cycle of

LFP oscillations. Each cycle consisted of a unique combination of

active PNs that were synchronized to each other, and all together

provided an input that may be sufficient to induce spiking in a

postsynaptic KC. Only small subset of all possible 10 cell

combinations of PNs had a ‘‘real’’ target (one of 19 KCs) in our

model. Each KC produced typically zero or one spike during the

whole 1 sec odor stimulus, responding to a unique combination of

synchronized PNs found at one of many LFP cycles. Coincidence

detection properties of the KCs in our model prevented

integration across many cycles making each cycle essentially

independent. In other words, each unique pattern of PN activity at

each LFP cycle during 1 sec odor presentation could be treated as

a separate stimulus – brief odor pulses. Therefore, one possible

interpretation of the above experiments on representation

persistence is that a set of 20 different stimuli presented as a

sequence (first 1 sec odor) was used to train a model circuit,

followed by application of 3x20 (2d, 3d and 4th odors)

independent stimuli. Finally, the representation persistence was

tested using the original set of 20 stimuli. Results of simulations

support a coexistence of multiple odor representations; the

sparseness of KC responses guaranteed little interaction between

different odor representations.

Synaptic Strength Dynamics
To better understand the mechanisms underlying the formation

of the response patterns to multiple odor sequences, we analyzed

the evolution of the synaptic strengths under each learning

mechanism. While training with odor sequences, changes under

SRDP affected most KCs, and most synapses at each KC

(Figure 6A, upper row). The proportion of synapses undergoing

strong changes was larger than for STDP, as shown by the wider

and higher kurtotic distributions of synaptic efficacies for

increasing number of training trials and learned odors

(Figure 6B, upper rows). In contrast, synaptic changes under the

STDP rule were subtler, and restricted to fewer KCs and fewer

synapses (Figure 6A and 6B). As expected from the specified

dependence on instantaneous conductance (Figure 1D), both rules

generated unimodal distributions of synaptic efficacies, for both

single odor and odor sequence olfactory experiences (Figure 6B).

The average evolution of synaptic strength shows that SRDP had

a stronger impact on KC synapses (Figure 6C). After SRDP

learning of the first odor in a sequence (or 50 single odor learning

trials), the average change was comparable to the value reached

with STDP after exposure to the full 4-odor sequence (200 trials,

Figure 6C). Thus, under these conditions, STDP is more selective

than SRDP. This selectivity should allow for a larger number of

odors to be learned and represented with a fixed number of

synapses.

Sparse Representations for Similar Odors
In honeybees, it has been demonstrated that selective disruption

of oscillatory synchronization by picrotoxin injections into the AL

impaired the discrimination of molecularly similar odors [12]. If

oscillatory synchronization of neuronal assemblies is essential for

fine sensory discrimination, and MB decoding in part depends on

the identity of active KCs, then KCs must be able to build distinct

sparse representations for similar odors based on differences in

stimulus-evoked oscillatory synchronization of the PN neural

assemblies. We investigated how STDP in the MB might help to

shape distinct sparse representations for odorants with similar

encoding in the AL (see Materials and Methods for a description of

similar and different odors).

First, we tested the model’s ability to discriminate pairs of very

similar odors extracted from a set of 10 odors (PS<0, see Materials

and Methods; Figure 7). We defined an odor trial as correctly

classified if its representation in KC odor space was, with cross-

validation, closer to its corresponding average response than to

any other average odor response. The classification error was

defined as the percentage of wrongly classified trials in a block of

50 trials. Olfactory representations for two similar odors A and B

Figure 3. Synaptic plasticity favors sparse representations in the MB. (A) Responses of the KC population to 8 different odors before and
after synaptic plasticity. Left column: spike count bar plots for naive responses. Middle column: responses after SRDP-based synaptic tuning during
presentation of 3 blocks of olfactory stimuli. Right column: the same for STDP. The sparseness measure Sp for each condition is indicated in the upper
left corner of the bar plots. (B) Histogram of the sparseness measure across the 8 different odors, in the naive, SRDP, and STDP cases. Note the
significant increase in sparseness after introduction of both synaptic plasticity mechanisms, compared to the naive system (paired t-test).
doi:10.1371/journal.pcbi.1000062.g003
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were largely overlapping in naive circuitry (Figure 7A, left), and

many responses to odor A were closer to the average response to

B. After synaptic tuning, all single-trial responses to odor A were

closer to its own corresponding response average (Figure 7A,

right), leading to perfect odor classification. This indicates that the

strong increase in KC sensitivity to the fine synchrony structure

induced by plasticity effectively improves discrimination of similar

odors.

To track the evolution of this enhancement for different

amounts of training, we quantified the portion of wrongly

Figure 4. Synaptic tuning over a wide range of initial conductance values. (A) Left column: spike count bar plots for naive population
responses (100%: reference value 170 pS; see text). Middle column: responses after SRDP-based synaptic tuning during presentation of 4 blocks of
olfactory stimuli. Right column: the same for STDP. The same test odor was used in all conditions. The sparseness measure Sp for each condition is
indicated in the upper left corner of the bar plots. Bottom row: Histogram of the sparseness measure at 130% of initial conductance value across 8
different odors, in the naive, SRDP, and STDP cases. Note the dramatic increase in sparseness following both synaptic plasticity mechanisms. (B)
Sparseness as a function of initial synaptic conductance value in the naive, SRDP, and STDP cases. In each conductance condition the distribution of
sparseness values Sp across odors is indicated as boxplots. Each box represents the lower quartile, median, and upper quartile. The whiskers extend
from each end of the box for 1.5 times the interquartile range. Outliers are indicated as crosses.
doi:10.1371/journal.pcbi.1000062.g004

Figure 5. The persistence of olfactory representations. Columns: different response patterns of the KC population with respect to STDP-based
plastic exposure to different arrangements of odors 1, 2, 3, and 4. From left to right: ‘‘naive’’; after learning on a test odor alone (e.g., ‘‘1111’’: four
blocks of odor 1); after sequential learning on combinations of four different odor blocks (e.g., ‘‘2143’’: presentation of one block of each odor, i.e.,
odor 2, followed by odor 1, odor 4 and odor 3); ‘‘RANDOM’’, after learning on a sequence of randomly permuted single 1-s trials of the odors 1, 2, 3,
and 4. Rows: the olfactory circuits above were tested by presenting one block of a single odor in the learning sequence. Last row: the same olfactory
circuits were additionally tested with the presentation of one block of an odor (odor 6) that was not included in the learning sequence. The
sparseness measure Sp for each condition is indicated in the upper left corner of the spike count bar plots (N/A: not available, less than 1/4 of 1-s trials
elicited on average at least one spike). For each multiple odor sequence, the Euclidean distance in 19-D KC odor space from the average
representation after learning on a test odor alone is indicated in the upper right corner.
doi:10.1371/journal.pcbi.1000062.g005
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classified trials across all possible odor pairs from the set of 10 very

similar odors (Figure 7B). Distinct olfactory representations were

already obtained with one training block. With two training blocks

(100 trials), odor classification improved further, resulting in only

three cases of partial overlap. The average evolution of the

classification error rate across all odor pairs suggests that an

asymptotically small (,2%) number of classification errors was

reached after 100 trials (Figure 7C). We noted that, corresponding

to this saturation point, the divergence of average odor responses

(cloud centers) in KC odor space also reached an asymptotic value

(Figure 7C). After 100 training trials the distance between two

cloud centers was always larger than twice the average distance of

single responses from their respective centers (cloud radius),

explaining the optimal classification results.

To what extent does plasticity-based improvement of KC

decoding abilities depend on the difference between PN responses

elicited by odors, that is, their mutual distance in PN space? To

explore those features over a homogeneous distribution of pairwise

distance values, we generated several sets of 10 odorants with

increasing degree of dissimilarity between odors within sets (see

Materials and Methods; Figure 8A). The closest odors were

characterized by very similar (identical for PS = 0; Figure 8A,

upper rows) slow temporal structure but different patterns of PN

synchronization (fine structure). For each odor pair in a set, we

quantified the distance (or divergence, see Materials and Methods)

in PN space (Figure 8B, bottom panel) and classification error in

KC space (as above) between the two representations. Before

synaptic tuning with STDP (Figure 8B, upper panel), odor pairs

with a high degree of similarity in slow structure gave a wide range

of error rates (0–45%), suggesting that the naive circuitry is unable

to exploit synchrony information to create distinct representations.

The fraction of pairs with poor classification was very high,

particularly over the range of PN distances covered by the two sets

with very similar odors. For larger PN distances, the error rate was

Figure 6. Synaptic strength dynamics. (A) Evolution of synaptic strength during presentation of odor sequences (columns) as in Figure 5. Top
row: SRDP; bottom row: STDP. In every diagram, the strength of each PN-KC synapse is color coded, from bottom to top, across the 200 1-s learning
trials (vertical axis). The corresponding KC is indicated on the horizontal axis, 10 synapses per KC (dotted grid). Values normalized to the initial
conductance g* and represented color coded as percentage of change. Note how STDP induces more selective and less dramatic changes. (B)
Distribution of synaptic strengths during learning after 50, 100, 150, and 200 learning trials (columns), as in Figure 5. Top box: SRDP; bottom box:
STDP. Each box compares values for single odor learning (upper row) with values for learning odor sequences (lower row). Single odor distributions
include the average synaptic values for the four odors 1, 2, 3, and 4, whereas sequence distributions include the average synaptic values for the odor
sequences ‘‘1234,’’ ‘‘2143,’’ ‘‘3421,’’ and ‘‘4321.’’ Normalization as in (A). Vertical red lines indicate mean values. (C) Average (6SEM) synaptic value
during learning of single odors (blue) or odor sequences (red). Values and normalization as in (A).
doi:10.1371/journal.pcbi.1000062.g006

    

 

 

 

 

 
     

     
 
 

 

 

     

     
 
 

 

 

     

     
 
 

 

 

    

 

 

 

 

Figure 7. Discrimination of similar odors in 19-dimensional KC space. (A) Clustering of responses to two similar odors A and B (PS = 0.02) for
a naive system (left panel) and after STDP-based synaptic tuning (right panel). Representations for 1-s odor trials of each odor (dots) in KC space were
compared by computing the Euclidean distance from the average response to odor A (vertical axis), and the average response to odor B (horizontal
axis). Diagonal line delineates classification. For this odor pair, classification was perfect after learning. (B) Wrongly classified trials (error) between
pairwise comparisons of 10 similar odors at different stages of learning. (C) The substantial average drop in classification error rate across all odor
pairs in (B) (red, right axis) can be ascribed to a matching increase of the distance between average odor responses (‘‘cloud centers’’ in KC space;
black, left axis) and a decrease in ‘‘cloud size’’ (twice the average distance of single responses to one odor from their respective ‘‘center’’; dashed black
line, left axis).
doi:10.1371/journal.pcbi.1000062.g007
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nearly constant and mostly below 5%. Thus the classification rate

was influenced by differences already expressed in, and transmit-

ted from the AL. After olfactory experience, the error rate for most

odor pairs plummeted to below 5% over the whole PN distance

range (Figure 8B, mid panel). This suggests that the strong

enhancement of classification ability for similar odors (Figure 8B,

insert) was provided by the increased sensitivity to oscillatory

synchronization patterns after STDP, as expected [12]. Only a

small discrete set of odor pairs very close in PN space continued to

elicit high rates of classification error. Taken together these

results indicate that fine tuning for ensemble selection through

a timing-dependent plasticity mechanism in the MB may

increase the ability to discriminate between two odorants

(Figure 8B insert).

  

Figure 8. Discrimination in MB versus intrinsic distance in AL. (A) Three odor pairs with identical (upper rows) or different (middle rows: 20%
different; bottom rows: totally different) slow temporal structure in AL representation (three cells; spike rasters for 50 trials). Note how the spiking
pattern of each PN becomes more and more different when divergence in PN space increases between the two odors. (B) Discrimination error in KC
space for a naive system (top panel) and after learning with STDP (middle panel). In each panel a dot represents an odor pair (as in [A]) extracted from
one of five sets of 10 odorants (bottom panel) with increasing degree of slow structure dissimilarity in PN space (abscissa) for pairs within the set. For
each pair the classification error in KC space is computed as in Figure 7A. Note how plasticity particularly improves classification for odor pairs that
have a very similar slow structure representation in PN space. Insert: Global enhancement of discrimination capacity after learning indicated as the
proportion of odor pairs with classification error lower than 5%.
doi:10.1371/journal.pcbi.1000062.g008
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Discussion

We used a model of the locust olfactory system to show that a

form of plasticity acting at the synapses between PN axon

collaterals and KC dendrites is an efficient tuning mechanism for

MB neurons to respond in a sparse and odor-specific manner to

dense odor evoked oscillatory input.

Synaptic Plasticity and Sparse Representations
Activity-dependent modulation of relevant synapses made

population responses in the MB highly selective and odor specific,

and increased trial-to-trial reliability, to the extent observed

experimentally in the locust olfactory system [7,33]. Activity-

dependent cortical plasticity is not unusual in primary sensory

systems, where it contributes to organizing the representation of

sensory information in well-ordered maps during development. It

has been examined extensively with experiments and models in

the visual [24,26,34], auditory [22,35], and somatosensory cortices

[36,37].

What mechanisms enable sparse and reliable KC firing only

when they detect the right input combination? In our computa-

tional model, plasticity could optimally tune KCs to become

selective coincidence detectors of preferred simultaneous PN

input. Physiological results from locust MB indicate that

coincidence detection results from the non-linear membrane

integrating properties of active depolarizing conductances (most

likely voltage-dependent) in KCs together with AL driven feed-

forward inhibition through lateral horn interneurons (LHIs) [7,8].

Even with the intrinsic (active conductances) and synaptic (input

from LHIs) mechanisms present, the specificity of KCs responses

to dynamic input is likely to require ‘‘initial’’ tuning of the synaptic

strengths between AL and MB. Indeed, with excessively strong

synaptic afferents, as in the case of high initial synaptic

conductances (Figure 4), a few aligned PN spikes would be

sufficient to induce spiking in a KC. Reducing the KC integration

window would reduce the probability of firing; however, the

sparseness of the response would still depend on the synaptic

weights. Increasing the initial synaptic coupling from AL to MB

would sacrifice sparseness. In this situation the KC could not

detect stimulus specific synchrony in the input from the AL,

resulting in a surplus of KCs firing for each odor presentation.

Computational work has shown that only when temporal aspects

of coding were not addressed, plasticity in the MB could be

omitted [38]. Thus, in our model, synaptic plasticity provides a

mechanism for tuning synaptic weights to the MB to enable

coincidence detection-based odor encoding by KCs, and to ensure

a sparse odor representation in the MB as observed experimen-

tally. However, these results do not imply that odor encoding in

the mushroom body depends solely on previous odor experience;

synchronous spiking in odor specific populations of PNs controls

the KCs response patterns during odor stimulation. Therefore, in

the system implementing AL-to-MB plasticity proposed here, the

similarity of glomerular olfactory maps and the structure of the

olfactory system across individuals (e.g.,[ 39,40]) can still be

reflected in odor-evoked activity in the MB as observed, for

example, in Drosophila [41].

Here we propose a form of experience-dependent plasticity as a

complementary mechanism to stabilize the interface between the

two circuits, increasing reliability, providing persistence and

maximizing the selectivity of sparse responses to time-varying

input. We showed this tuning to be especially useful in situations

where precise comparisons between input patterns are required (as

when similar odors must be distinguished). Analogous scenarios

may occur in other neural systems. In the developing visual

system, the fundamental structure of cortical maps appears to be

intrinsic [42], yet experience is crucial for maintaining the

responsiveness and selectivity of cortical neurons, as well as for

defining detailed map features [34]. Other sensory circuits

employing coincidence detection have been shown to require

plasticity-controlled synaptic tuning to adjust for transmission delays

along axonal pathways of variable length, accurately tuning spike

arrival times [22]. Here we contend that in the locust all these

properties can coexist in the same olfactory circuit and that their

combined action on synchronized oscillatory activity contributes to

the observed functional transformation of neural codes.

In our model a relatively small fraction of total PN population

was connected to each KC. Recent results indicate that a much

larger fraction of the PN population (up to 50% of the all PNs in

the locust AL) may constitute the ‘‘receptor field’’ of a single KC

[43]. With our model we found that changing the fraction of PNs

synapsing upon a single KC made little difference to the results as

long as all initial synaptic weights were scaled accordingly. Indeed,

the fraction of PNs connected to a single KC, the size of the KC

integration window and the absolute synaptic weights between AL

and MB constitute complimentary parameters that control the

sparseness of MB responses. The effect of increasing the number of

PNs projecting to a single KC is similar to that of increasing

synaptic weights or increasing the integration window in KCs – all

lead to a loss of sparseness (see, e.g., Figure 4). Therefore, our

study provides a general prediction for how a loss of sparseness in

the MB can be recovered by active plasticity mechanisms

operating between AL and MB.

Sparseness of KCs responses also depends on the input they

receive from LHIs; this rhythmic inhibitory input resets KCs at the

end of each oscillatory cycle, thus preventing the integration of

spikes from PNs over longer time intervals [7,8]. And, recently, it

was proposed that LHIs maintain the sparseness of KCs’ responses

across a wide range of odor concentrations by changing the size of

the KCs’ integration window [44]. Under the conditions

considered by our model, however, the duration of the KCs

integration window was already limited by the intrinsic properties

of KCs (see Materials and Methods; Figure 1F and 1G).

Furthermore, in contrast to the case of a change in odor

concentration, a change in the synaptic weights between the AL

and the MB does not affect the timing of the LHI firing.

Therefore, an increase in synaptic weights to the MB would lead to

immediate increases in response probability of KCs, which cannot

be compensated by LHI input; under these conditions, other

mechanisms involving direct alternations of synaptic weights are

required to control sparseness.

Between zero (no specific response in any KC) and ,15% of all

KCs, depending upon the odor, remained active after training in

our model; a given odor usually induced responses in 5-10% of all

KCs. This fraction is somewhat larger than the estimations from

the experimental data, likely the consequence of our simulation of

odors as the activation of all PN afferents. In vivo, an odor would

induce measurable responses in only a fraction (,40%) of the total

PN population [45]. Therefore, our results provide an upper

estimate to the probability of KC firing.

Spike-Timing Dependent Plasticity
By selectively strengthening the synapses that participate in the

generation of an action potential within the potentiation time

window Dt.0 (Figure 1C), STDP triggers competition among the

inputs to a neuron [30]. Repeatedly correlated inputs on the

timescale of the LTP time window will eventually control

postsynaptic firing, whereas less effective, uncorrelated inputs will

be weakened. Thus the STDP mechanism was more effective than
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SRDP at tuning postsynaptic neurons to select synchronized

ensembles. Synaptic changes under STDP were in general less

intense and more selective (Figure 6), such that a fixed number of

synapses could learn to represent a larger number of odors

(Figure 5). This was mediated by the fine timing-dependent

interplay of LTP and LTD that allows activity-dependent

bidirectional modification [46], a computationally useful feature.

In addition, acting locally at each synapse, STDP conveyed global

stability and normalized synaptic strength [30,31] (Figure 4),

without requiring a global scaling signal [27].

Why does STDP favor sparse representations in the MB? A

spike occurred in a KC only when input from the AL exceeded a

predefined threshold. We found that vigorous spiking occurred

throughout the MB when this threshold was set low – then, many

KCs received input sufficient to trigger a spike. Because different

KCs sample different sets of PNs, dense spiking can only occur

when synapses are relatively strong, permitting only few input

spikes to depolarize KCs above the spike threshold. Thus, there is

a strong relationship between the sparseness of responses in KCs

and synaptic weights from AL to MB. This relationship also

underlies our observation that, when MB responses are dense, only

the first few of a series of spikes from PNs received by KCs may

have positive STDP timing; the rest of the spikes will arrive after

the KC has fired an action potential, causing the respective

synapses to be weakened by STDP. Thus, for each KC, plasticity

acts to facilitate only a few of the input synapses and depresses the

others. The overall effect of this dynamic is a decrease in net

synaptic weight (Figure 6). Synaptic depression halts only when

synaptic weights become sufficiently weak that the collective action

of the majority of the input spikes is required to trigger a

postsynaptic KC response. Because only a fraction of the PNs is

synchronized during an odor response, only a few KCs may

receive enough synchronized input to spike. So, the process

converges to the state that is characterized by sparse odor

representation in the MB.

Whereas the functional significance of oscillatory synchroniza-

tion in neural circuits is generally uncertain, in the insect AL it has

been shown to be essential for fine perceptual discrimination [12].

Our model replicated this aspect of coding, as shown by

simulations with PN firing patterns with the same slow temporal

structure but different cycle-specific PN synchronization. Because

of the intrinsic sensitivity to such synchronous ensembles, STDP

tuning efficiently enhanced the ability of the circuit to discriminate

among similar odors (simulated by similar PN response patterns),

significantly reducing classification errors. In general, STDP was

more effective than SRDP, which has implications for future

experimental investigations of plasticity mechanisms in insects

MB. We cannot exclude the possibility that, for different types of

neuronal networks and different input patterns, SRDP may prove

as efficient as STDP did in our model of the locust olfactory

system. Particularly, models of sensory processing which do not

depend on the synchrony of presynaptic spikes may benefit less

from STDP. We tested a wide range of parameters in our model

and always found STDP to perform better than SRDP.

Interestingly, STDP was recently observed to occur at the

downstream (projected to the alpha/beta lobes) synapses from

KCs [47]. This finding suggests that forms of plasticity mediated

by spike timing are not unique to vertebrates, and provides

support for our predictions regarding a role for STDP in fine

tuning the synaptic weights between AL and MB.

Plasticity in the MB of Insects
Synaptic plasticity in the MB dendrites is a mechanism that may

subserve different functions. In Drosophila, synaptic transmission

between KC and downstream populations is necessary for

memory retrieval but not for memory acquisition or consolidation

[19,20]. This suggests that synaptic connections from AL to KC

dendrites may be the sites of functional plasticity relevant to the

acquisition and storage of memories. Our results strengthen this

idea, showing that a circuit trained with several different stimuli

can retain response specificity (Figure 5). However, the main

prediction of our study is that synaptic plasticity on the KCs

dendrites is important to ensure optimal (sparse) MB responses

after sufficient odor experience. It suggests that a broad enough set

of distinct odors could tune the whole system and ensure optimal

MB responses for all possible inputs including those not used for

training. Thus, our study is consistent with a recent set of

experimental results supporting a pre-synaptic mechanism of

plasticity between Kenyon cells and mushroom body extrinsic

neurons as a critical process in olfactory memory [48–50]. Finally,

recent intracellular recordings made in vivo in locust revealed that

individual synapses from KCs onto downstream targets are

excitatory and undergo STDP on a +/225 ms timescale [47].

This finding not only confirms the plausibility of STDP

mechanisms in the locust olfactory circuitry, but also shows that

these mechanisms appear to have properties similar to those found

in vertebrates, directly supporting our strategy of selecting learning

rule mechanisms and parameters.

What are the mechanisms underlying changes in synaptic

strength in insects? There is growing evidence that plasticity

mechanisms acting on different time scales are widespread in the

olfactory circuit of locusts and other invertebrates. In honeybee,

experience- and age-related changes in KC dendritic trees have

been reported [51]. In cricket, dendritic spines of KCs exhibited

high concentrations of the protein f-actin, suggesting that the calyx

may contain sites of synaptic and structural plasticity [52]. More

importantly, activity-dependent modifications resembling fast

learning have been observed in locust AL [6], where stimulus

specific-responses of PN assemblies rapidly decreased in intensity,

while increasing in spike time precision and cross-neuronal

oscillatory coherence. Yet, and most importantly, the recent

experimental observation of STDP at excitatory synapses directly

downstream of the locust MB [47] implies that mechanisms

implementing coincidence detection do exists in this insect.

Finally, evidence from Drosophila suggests that alternative mech-

anisms based on the cAMP signaling cascade might convey similar

features [53,54].

It will be important and interesting to examine the results of our

theoretical work with experiments performed in vivo. Recent work

[47] has demonstrated that, in the locust olfactory pathway, STPD

helps maintain timing precision at the synapse connecting KCs

and their follower neurons in the beta lobe. The direct

measurements of PN-to-KC synaptic strength needed to test our

model results in vivo will be challenging, because individual

synapses are very weak [43]. However, studies pairing direct

stimulation of the PN output pathway with odor presentations

(which cyclically depolarize KCs) should enable tests of timing

hypotheses posed here.

Synaptic Plasticity and the Neural Code
There is a consensus, supported by a large body of experimental

evidence [34–37], that activity-dependent synaptic plasticity is the

general mechanism underlying the formation of memory repre-

sentations in the brain during learning and development.

However, understanding these processes at the systems level

requires an integrated study of elemental synaptic mechanisms

with neural coding strategies at the level of neuronal ensembles, as

well as their complex interaction within neural networks. In the
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cerebral cortex and other major systems, the spatio-temporal

structure of the input to neuronal populations is largely unknown,

making it difficult to assess the role of plasticity rules such as STDP

in information processing and memory formation. In contrast, in

the insect olfactory system much is known about the intrinsic

circuitry [7,40], functional architecture [6,12], functional proper-

ties of neuronal ensembles [3,28,33] and their combined role in

odor perception. Because the spatio-temporal structure of the

input to the MB is well characterized [3,9,10,28,33], the locust is

an ideal system to study the interaction of neural coding strategies

with plasticity and learning mechanisms.

In particular, our results suggest a role for plasticity in the

synthesis of information whenever oscillatory neuronal ensembles

are revealed by LFP or EEG oscillations. At the synapses along the

dendritic tree of a cortical neuron, STDP may, for example, favor

the exclusive selection of the combined output of an upstream

ensemble labeled as belonging together, and differentiated from

other assemblies, by the transient synchronization of individual

spikes [1,3,10,15]. Although these predictions are biologically

plausible, they may be challenging to test. Depending on input

firing rate and the duration of transient synchronization, the

neural decoder could respond vigorously or, as in locust, sparsely

[7]. In larger systems such as mammalian cortex, sparse activity

could be difficult to detect.

In summary, we used a computational approach to examine

together the separate mechanisms contributing to olfactory

perceptual learning. Population activity in the AL reformats and

represents every sensory attribute of the stimuli, constructing a

‘‘neuronal version’’ of the olfactory world. The MB, as a

specialized ‘‘read-out’’ circuit, extracts information from that

representation for further processing and memory formation. We

found that an activity-dependent plasticity mechanism operating

at the same synapses involved with the read-out can maximize and

stabilize the transfer of specific sensory information between the

two structures, ensuring a consistent decoding.

Materials and Methods

Modeling Neurons and Neural Circuits
The neural circuit models were implemented with biologically

realistic neurons using NEURON [55], a simulation environment

for empirically based neuronal modeling. KCs were modeled as

single-compartment cells with fast Hodgkin-Huxley-type spiking

dynamics:

Cm dV = dt ~{gL(V{EL){INa{IK{Isyn ð2Þ

where Cm is the membrane capacitance, gL is the leakage

conductance, EL is the reversal potential, INa and IK are active

Hodgkin-Huxley-type intrinsic currents, and Isyn is a sum of

synaptic currents [56]. Data on the biophysical properties of locust

KCs are not yet available. Therefore, we approximated KC

properties with general descriptions borrowed from other cell

types. We were guided by two principles: (1) minimize the number

and complexity of ionic currents; (2) generate realistic (though

simplified) firing profiles. Previous modeling studies based on a

similar methodology revealed the cellular and network mecha-

nisms responsible for the patterning of odor responses in the locust

AL [9,10].

In the model, the width of the timing window for detection of

coincident inputs resulted from biophysical properties (internal

parameters) of the KC. We found that, for a naive KC (i.e., before

plasticity), at least 8 afferent spikes were required to induce firing;

when equally spaced, these could maximally span an 8-ms

window. The coincidence detection features of a naive KC were

systematically tested by generating many combinations of 10 input

spikes with timing distributed according to Gaussian functions of

increasing variance (Figure 1F). These combinations differed in the

interval between first and last spike (window range; Figure 1G).

For equal ranges, the combinations had different sequences of

spikes within the window. We observed that coincident spikes

reliably elicited KC firing for any input combination occurring

within a 20 ms window. For larger windows detection reliability

decreased (30% at 30 ms) and almost vanished above 40 ms. In

our model we omitted feedforward inhibition from lateral horn

interneurons, a pathway that has been shown to constrain the

coincidence detection window to about 25 ms [7]. This allowed us

to assess the effects of synaptic plasticity on response selectivity and

sparseness separately from other timing constraints.

Spike-Rate Dependent Plasticity
Synaptic modification for SRDP was determined according to a

modified covariance learning rule [25] that was applied at each

PN-KC synapse every 100 ms (i.e. 10 times during a 1-s

presentation trial, or every 2nd oscillation cycle; Figure 1A). For

each test frame, the time of each KC spike was identified, and the

number of spikes for each input PN in the preceding 100 ms

determined the PN instantaneous firing rate. When a KC spike

was preceded by two or more spikes in one PN, the corresponding

synaptic conductance would be increased; one or no PN spike

would lead to conductance decrease (Figure 1B). Because KC

spontaneous firing rate is extremely low (median 0.025 spike/sec;

[7]), the KC covariance term was replaced by a binary element

conditioned on KC firing (i.e. conductance changes as above, as

long as KC fired at least once; see Figure 1B).

Spike-Timing Dependent Plasticity
For every PN-KC synapse, the timing difference Dt = tpost2tpre

between pre- and post-synaptic spiking events determined the

direction and amount of synaptic modification. Characterization

of the pairing time window in cultured hippocampal neurons [57]

(Figure 1C), showed that for both LTP and LTD the change in

synaptic strength decays according to an exponential function

Lr
6(Dt) = exp(2Dt / t6) (see Equation 1). Thus, a presynaptic spike

preceding a postsynaptic spike in an interval covered by the critical

timing window produced a conductance increase. A presynaptic

spike occurring after the postsynaptic spike produced a conduc-

tance decrease.

STDP introduces several useful computational features that

have been explored by previous modeling studies [24,30,31,58]

and have been incorporated here. Thus, it was assumed that every

synaptic pairing event could potentially trigger a change of the

value of g, with the approximation that the successive modifica-

tions elicited by matched pairings sum linearly after weight

adjustment [24,30]. We assumed a longer time constant for LTD

(t2 = 20 ms) than LTP (t+ = 10 ms) [59] to provide sensitivity to

input correlations over much longer timescales than STDP with

equal time constants [24] and to ensure overall weakening of

synaptic efficacy for random pairings. Motivated by experimental

[59] and modeling [60] studies, it was further assumed that each

postsynaptic spike interacts with the presynaptic spikes immedi-

ately preceding and following it (nearest-spike interactions).

Dependence on Synaptic Strength
Theoretical work has long suggested that the intrinsic positive

feedback instability of Hebbian learning rules requires models to

incorporate constraints to avoid the unrestrained escalation of

conductance values, to obtain asymptotically stable distributions,
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and to reproduce plasticity mechanisms like those observed

experimentally (reviewed in [61]). The choice of constraints

strongly influences the behavior of the model. Imposing hard

bounds on synaptic efficacies results in bimodal synaptic strength

distributions with values concentrated around the boundaries

(e.g.,[22,23,30,31,58]). This is unrealistic in the MB, where KCs

need flexibility to acquire new odors through synapses not

involved in the representation of previously learned stimuli. To

obtain stable unimodal distributions of synaptic efficacies, we

therefore modeled changes in synaptic strength as dependent on

the instantaneous conductance value, proposing linear depen-

dence through factor Ci (see Equation 1) [58,60,62] (Figure 1D).

This is supported by experimental observations indicating that

size-dependent potentiation is weaker for stronger synapses

[57,63,64], whereas synaptic weakening seems to be proportional

to synapse strength [57].

Any selected initial conductance value g* was augmented by a

5% change (Ci) after one single pairing (Figure 1D). Under

independence between pairing events, this assumption is support-

ed by data from LTP experiments in which changes in synaptic

efficacy are quantified over multiple pairing events (e.g., 60

pairings; [57]). For a typical initial conductance value g* of 170

picoSiemens (pS), a 5% change leads to a change of 8.5 pS, in

agreement with previous modeling studies (e.g., 7 pS, [60]). Some

results suggest that individual potentiation and depression

plasticity events are discrete and heterogeneous in nature

[65,66]. It is still unclear, however, whether or not this is true in

vivo. Since synaptic plasticity is proposed here as a mechanism to

adjust AL-MB synapses to provide sparseness of representations

(and not as a mechanism for precise memory changes), the main

results of this study remain correct as long as synaptic plasticity

provides overall weakening of synaptic efficacy for random

pairings (see above). Because experimental evidence suggests that

cumulative changes in synaptic efficacy larger than 150% of the

initial synaptic value are unlikely [57], conductances larger than

150% of the initial value did not further potentiate. The relative

amount of synaptic depression was assumed to grow linearly and

in proportion to the instantaneous conductance value, with the

same absolute rate of change as for potentiation. Hence, any

selected g* would initially be reduced by a 10% change.

Dependence on Pairing Frequency
We further anchored the computational model in physiological

data by tying the regulation of synaptic efficacy to the frequency of

pairing (factor Fp in Equation 1), as shown experimentally [46].

Specifically, frequency dependence of LTP seems to partially

depend on the residual depolarization between action potentials at

high (.10 Hz) frequencies [59]. For presynaptic PNs, we adopted

reported nominal threshold frequency values of 10 Hz for LTP

and 0.1 Hz for LTD [46,59]. Given the intrinsic low firing rate of

KCs, we adjusted their LTP threshold value to 1 Hz (i.e., at least 1

spike per odor trial). PN average firing rate varied over the narrow

10 to 30 Hz range during odor stimulation. Therefore, we did not

incorporate frequency-dependent growth and saturation [46],

thereby avoiding conflict with the linear summation of the effects

of spike pairs.

Olfactory Stimulation Patterns and Population Codes
Population coding in the AL was modeled as PN spiking activity

set to mimic the odor identity encoding observed in vivo (Figure 2A).

Thus, in numero, AL odor responses consisted of spatiotemporal

patterns distributed across evolving PN ensembles exhibiting

oscillatory synchronization [3,28] (Figure 2B). Specifically, each 1-

s ‘‘odor’’ stimulus was defined by its representation in the AL

through a matrix with a unique spatio-temporal pattern of spiking

activity across all 100 PNs (Figure 2C, showing a subset of 10 PNs,

the input to one KC) [8]. ‘‘Different’’ odors were generated by

modeling completely different patterns of PNs activation. In

particular, for each odor it was assumed that about 50% of all

afferents are active at the first cycle of odor induced oscillations. At

the next cycle any active PN (Figure 2C, colored boxes) could then

become silent (Figure 2C, white boxes) and vice versa. However, to

avoid abrupt changes we assigned higher probability (P = 0.65) for

any PN to stay in its current state (silent or active) than to change

activation state. This procedure created firing patterns for

individual PNs with epochs of active (silent) behavior lasting

150–200 msec on average, which was consistent with experimen-

tal data [67] and our previous results of AL modeling [9].

Spike timings of active PNs at each trial were calculated from

Gaussian distributions with standard deviation s being function of

cell and cycle numbers. Narrow distributions (small s) character-

ized cells firing consistently near LFP peak (see below) across trials

(synchronized neurons; Figure 2C, pink boxes). Wide distributions

characterized neurons spiking randomly from one trial to another

(Figure 2C, yellow boxes). For a given neuron, s changed from

one cycle of oscillation to another to model transient patterns of

synchronization. To avoid fast switches between synchronous and

asynchronous states, we assigned a higher probability for any

active PN to preserve its low (or high) s between cycles. About

50% of all active neurons were synchronized at each cycle of

oscillations. This design created a temporal structure where action

potentials of each PN were phase-locked with ‘‘the LFP’’ for 1–5

cycles of population oscillations (50–250 ms), and were followed or

preceded by epochs of desynchronized firing or silence (Figure 2C),

consistent with experimental data [67] and previous modeling

results [9,10].

In summary, on average, about 50% of the PNs were active at

each instant of a given odor presentation. About half of those were

synchronized with each other, generating 20 Hz oscillations in the

population average (referred to as ‘‘the LFP’’). The identities of

both the active PNs and the synchronized subset changed slowly at

each 50 ms oscillation cycle over stimulus duration, modeling slow

temporal structure and transient spike synchronization, respec-

tively [8]. This pattern was odor specific and preserved across all

trials with a given odor. However, precise timing of individual

spikes was set to be different for different trials of a given odor, as

calculated from Gaussian distributions. The resulting ‘‘jitter’’ of

spike timing was centered on the LFP peak: it was small

(,10 msec) for synchronized PNs, while it was large (up to

50 msec) for nonsynchronized PNs. This jitter of PN spike timing

was an essential source of noise in the input to the MB.

Olfactory Learning Experiments and Response
Quantification

A presentation block of olfactory stimuli consisted in a series of

50 exposures to a 1-s odor trial followed by a 1-s blank period.

Either SRDP or STDP mechanisms were engaged during training

experiments, which typically involved presentation of multiple

blocks. Plasticity mechanisms were disabled during quantifications

of population response, which always employed one block (50

trials). Spike raster diagrams illustrating population responses over

one presentation block (Figure 2D and 2E, left panels) were

summarized by cumulative spike count bar plots (Figure 2D and

2E, right panels; Figures 3–5).

Population Sparseness
Population sparseness Sp [68] was measured to quantify the

extent to which the population code in KCs becomes sparser after
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repeated exposures to odors:

Sp ~

1{

PN
j

rj=N

� �2

PN
j

r2
j=N

1{1=N

where N is the number of units and rj is the response of unit j. This

measure of sparseness is inversely proportional to the number of

active cells in the population response, varying from 0 for the

densest to 1 for the sparsest. To ensure that population sparseness

was estimated only for reliable and meaningful responses to a

given odor, we required that, at least in one cell, more than 1/4 of

the 1-s trials elicited on average at least one spike.

Odor Space in AL
Odor encoding in the AL was determined by the spike timing

structure over all PN-cycle combinations (100 PNs620 oscillation

cycles in a 1-s trial). A special metric was defined to measure the

distance (divergence) between two such odor representations. First,

for every PN a time series was created by convolving every spike

with a Gaussian Kernel (s= 5 ms, m= 2s, full-width-half-

maximum = 11.8 ms). The 100 presynaptic spike trains represent-

ing the first odor were then compared pairwise with the 100

presynaptic spike trains representing the second odor using an L1-

metric (Manhattan distance); this spawned a 100-D vector with the

L1-distances. The Euclidean norm of this vector provided the

distance measure between two odor representations in PN space.

Odor Space in MB
Single-trial population output in the MB was examined as a

vector in a 19-dimensional (19-D) KC odor space, each dimension

counting the spikes generated by one KC during response to a 1-s

odor presentation. The average vector over 50 trials represented

the average response to a given odor. For illustration, a set of

single trial responses can be imagined as a 19-D cloud of points

centered on their average response. The Euclidean metric

determined the distance (divergence) between two responses. For

example, two different odors with ultra sparse representations (i.e.,

based on one single KC spike per trial) would occupy the unity on

orthogonal axes in MB odor space, and therefore their distance

would be sqrt(2) = 1.44 spikes apart.

Similar Odorants
Some experiments required sets of similar odorants with a

quantifiable degree of within-set similarity. Starting with the AL

representation of a master odor (Figure 2B and 2C), a new odor was

independently generated by randomly substituting a fraction of PN-

cycle spike pattern combinations of the master odor, with a set-

specific fixed substitution probability PS. In other words, the slow

temporal structure of odor encoding in AL was altered by PS N 100%.

For each of the 10 new odors in a set, each replacing spike pattern

was extracted from the corresponding PN-cycle time window of one

of 10 target odors totally different from each other. They were called

‘target’, because with PS = 1 the slow temporal structure of the

master odor would be entirely mutated into that of a target odor.

Additionally, the synchrony characteristics (fine structure) of every

PN-cycle in a new odor were reassigned independently. Spikes not

phase-locked with the LFP could become synchronous, and vice

versa. By repeating this procedure with several values of PS M {0,

0.02, 0.08, 0.2, 0.5}, we were able to control a progressive

divergence of the master odor toward the 10 different target odors.

Odor pairs in the new sets were thus characterized by varying degree

of similarity determined by PS. All newly generated odors had a

comparable ratio of PN-cycle compartments with synchronous

spikes, non-synchronous spikes and silence.

In Vivo Recordings
Standard extracellular, ‘‘tetrode’’ recordings were made from

PNs in the locust antennal lobe, as described [33].

Supporting Information

Figure S1 SRDP and the persistence of olfactory representa-

tions. Data are represented as in Figure 5. Columns indicate

different learning protocols under SRDP. From left to right:

‘‘naı̈ve’’; learning on a test odor alone (e.g., ‘‘1111’’); sequential

learning on combinations of four different odor blocks (e.g.,

‘‘2143’’); ‘‘RANDOM,’’ learning on the sequence of randomly

permuted single 1-s trials of the odors 1, 2, 3, and 4. Rows indicate

the test odor for the olfactory circuits above (odors 1–4 were

included in the learning sequence; odor 6 was not included in the

learning sequence). For each spike count bar plot, the sparseness

measure is indicated in the upper left corner (N/A: not available,

less than 1/4 of 1-s trials elicited on average at least one spike),

whereas the Euclidean distance in 19-D KC odor space from the

average representation after learning on a test odor alone is

indicated in the upper right corner (multiple odor sequences only).

Found at: doi:10.1371/journal.pcbi.1000062.s001 (0.53 MB EPS)
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