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Laboratory investigation of complicated chaotic regimes in a simple noise generator is described.
The investigation includes detailed introduction into the problem, qualitative analysis of the noise
vencrator, and description of the routine for computer processing of results of the experiment.

1. Introduction. Origin of Stochastic Processes
in Ordered Systems

Our every-day experience and traditional education lead us to the conclusion that random, complicated,
and irregular behavior is a feature of complicated systems. Examples are the disordered motion of
moelecules in a vessel filled with gas or the behavior of a crowd of infuriated fans when a footfall
match has been cancelled suddenly. We are usually unable to relate cause and effect unambiguously
in such complicated systems, that is we cannot predict the processes that occur in them in detail and
conclude that they are random. Nevertheless, there is always the hope that these random features and
this unpredictability could be eliminated if one had more precise knowledge about the system. It was
taken for granted for a long time that if complete information was available about the interactions
between all components of a complex system and its initial state was completely specified, its behavior
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Fig. 1. The periodic (thick line) and random (thin line) trajectories in the form of sequential steps for the sim-
ple system .1 = {22, } plotted by a personal computer.

dynamic chaos is organized. Now we have to answer a natural question; namely, if there are periodic
systems among random ones, is it possible that only periodic systems are encountered in reality?

In fact, periodic systems are not stable, and given a small error in 2, we get a fundamentally
different sequence (see Fig. 1). This demonstrates another feature of dynamic chaos, namely its
sensitivity to changes in the initial conditions. Thus, although there is an infinite number of periodic
sequences (but even more aperiodic sequences), it is practically impossible to realize them all. This is
because they form an almost continuous set and are in a way indistinguishable. Suppose that we have
a small error in the initial value then we don’t get that sequence, but the one we do get still belongs to
the set of unstable trajectories. Thus one of them is always observed. This leads us to the interesting
conclusion that although a particular trajectory of our stochastic set cannot be observed or realized
because of instability, the set as a whole is stable, and one of its wrajectories is observed.

Why was random behavior of nonrandom systems never seen before? Could it be that our ideas are
only applicable to artificial systems, and life is different, perhaps real chaotic systems are described by
different equations? Could Newton's equations guarantee the regular behavior of mechanical systems?

Let us consider a very simple example, namely the motion of a swing. It is certainly described by
the ordinary equations of mechanics, but even this example is flawed. We know that the swing moves
periodically, but in fact the period is determined by the rider, who can vary the effective length of the
swing by sitting and standing, thus accelerating the seat or retarding it by moving out of phase. Let us
deprive the rider of the freedom of choice and replace him by a mechanical man that sits and stands
periodically. The swing will oscillate irregularly without any external force. By sitting al a constant
frequency that is out of phase with the swing, the man-will lengthen or shorten the pendulum and thus
supply energy to the swing or take it away. The process will be random because at different angles the
swing will move at different velocity. For example, when the seat is at the low position the velocity
is zero or very small. Thus a real mechanical system moving according to Newton's laws behaves
chaotically, i.e., it generates chaos. If you ask why this was nol seen before, we think that in fact it was
seen, but not recognized. Within the traditional framework isolated experiments on the chaotic behavior

of simple systems could be neglected. In some way or other, randomness was interpreted in lerms of
‘unaccountable’ noise or fluctuation.

Now we proceed to a more accurate description of dynamic systems which display chaotic behavior
(sequences can be interpreted as dynamic systems with discrete time). The phase space of such systems
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can be found very easily.. It follows from the formula z,., = F(z,) that after one mapping the initial
~ probability density p;(z) defined on the closed interval transforms to

pin(F(@) =Y Pi(z)|dF(x)/dz|™", )

where the sum is taken over all branches of the function F(z). This equation can be explained as
follows: the initial distribution becomes less dense by the factor dF'/dz (the mapping is stretching), but
after several operations points from different parts of the initial interval are mapped to the interval dz
because the mapping is not one-to-one. Mappings like that in Fig. 1 have an invariant probability
distribution P(z), which can clearly be derived from the condition p;. = p; = P, i.e,, P(z) should
satisfy the equation

P(F(X))=_ P(z)|dF(z)/dz|™". 3)

By using a direct substitution into Eq. (3) we can prove that P(z) = const for piecewise linear
mappings like z,.; = {2z,}. Since the integral of the probability is unity, we can set P = 1 and
1

hence for the mapping (z) = [ zdz = 1/2, the variance is D = ((z — (z))*) = 1/12, and the correlation
0

function [3] is

1 .
KG) = D™H({(e1 = (o)aser = (o)) = 12 [ (5= 1/20(27) = 1/2)d = expl~(n2)).
S J

We can see that in our case the correlations fall exponentially with time. The exponent characteriz-
ing the rate of fall of the correlation and the rate of spread of the trajectories, i.e., Lyapunov exponent,
is the Kolmogorov—Sinai entropy. In this case the entropy is h = In2.

Is stochastic behavior possible in systems that are not described by discontinuous mappings like
the one in Fig. 1 but by smooth ones? The answer is yes, but not in all cases.

Consider the set of mappings . = F(z,) which depend on a parameter b

Thet = bzp(1 — ). 4)

At b = 4 the maximum z = 1/2 is a pre-image of the stationary unstable point z = 0 (the point z = 0
follows = = 1/2). After the variable change y = ¢(z) = (2/7) arcsin 1/z [4], the mapping defined in (4)
at b = 4 becomes the piecewise linear mapping

F(y)‘{za—y),' 1j2<y<1. ®

We have already proved that this mapping has an invariant probability distribution. Hence at b = 4 the
mapping defined in (4) also has the invariant probability distribution [71'\/2:(1 - x)]_l.

2. Noise Generator. Approximate Description and
Experiment

When investigating stochastic processes in dynamic systems by the methods of the theory of oscillations
we have to construct the stochastic set, to understand the mechanism by which chaos is generated, to
formulate its criteria, and then, after finding a small parameter in the system, we obtain an approximate
description of the system’s behavior in the stochastic region. This procedure is only possible for
relatively simple systems with a three-dimensional phase space that can be described by two-dimensional

or, approximately, three-dimensional Poincaré mappings. Consider a simple electronic generator of
stochastic oscillations.
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. Fig. 4. Current-voltage characteristic of the tunnel diode used in the noise generator.

high-voltage branch. When R < 11 Q, the triode nonlinearity can be ignored, and the signal consists of
trains of exponentially rising oscillations, while switching from one train to the other is accompanied by
a voltage pulse across the diode. When R <-11 Q no periodic oscillation are detected, and in any case
a random signal with a continuous spectrur'rj;is generated. We can see in the spectra and oscillograms
shown in Fig. 5 that the growth rate of the oscillation amplitude h rises as the resistance in the circuit
falls, while the average train duration gets shorter, and the peaks in the spectrum, corresponding to the
train repetition frequency, get broader. Most of the power is contained in the main peak, corresponding
to the circuit’s natural frequency. -

We can use dimensionless variables in Eq. (6) by the substitution z = I/Iy, z = V/Vq,
y =UCY2J(IoLY?), T = t(LC)/2. We then have

E=2hz+y.2, §=-x, pi=z— F(z),

where k= 0.5(MC — rC)(Ic)"/? is the growth rate of the oscillations in the circuit without the diode,
9= Vi CY2/(I,, L'/?) is the parameter characterizing the effect of the tunnelling diode, = gC; /C < 1
is a small parameter.proportional to the diode capacitance, and f(z) = I1¢(Vnz)/ Iy is the dimensionless
characteristic of the diode (Fig. 4). .

The system (7) includes a small factor:y multiplied by a derivative, hence motion in phase space
may be separated into fast (diode switching- at z = const and y = const) and slow motion, in which the
voltage across the diode follows the current;[the trajectories belong to the surfaces'A (z = 0) and B
(z = f(2), F'(z) > 0) corresponding to the & and § branches of the diode characteristic]. '

The system has one unstable (at 2k > g/ f'(0)) equilibrium at the saddle pointz =y =z=0. The
trajectories on the surface A wind around the unstable focus and, in the long run, reach the surface
B. From here the system moves along a fast trajectory to the bottom of the surface B. After moving
across B, the system switches along a fast trajectory back to surface A to the neighborhood of the
equilibrium point, and a new train of rising oscillations is generated. This pattern corresponds to the
real trajectories in oscillograms of Fig. 5.

3. Statistical Descripﬂon-of the Simple Noise Generator

Now we shall demonstrate that at y = 0 the noise generator can be also described in terms of
a multivalent mapping of an interval to itself. The mapping is, however, more complex than the one in
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Fig. 6. Phase space of the system described by Eq. (7).
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Fig. 7. Poincaré mepping for the system (9): (a) the trajectory belongs to one surface of slow motion; (b) the
n: . trajectory rapidly moves to the second slow-motion surface and returns back.

The ;ﬁapping ‘consists of two parts. The function Fi(3 y;) describes that part of the mapping
represented by trajectones not extending to the half-plane B (Fig. 7a), and the function F>(y;) describes
the part represented by trajectones belonging to both half-planes (Fig. 7b). From Eq. (9) we immediately
obtain ' . )

Gaee T }’}4.1 = Fl(yj) = exp(27ru)yj = kyj. (10)

The function F5(y;) cannot be explicitly derived from Eq. (9b), and therefore we approximate it with a
formula which qualitatively describes the trajectory’s stochastic behavior, i.e.,

by
B !

s yiet = Fa(y) = yo = (y; — y0)'/*. : (an

B

Thus, when JJ < yo we use the branch of the mapping defined in (10), and when y; > yo the
branch defined in (11). The 1/2 exponent in Eq.(11) reflects the fact that the trajectories approach the
line of fast motion x = 1 approximately tangentially. The constant yg is the shift of the trajectories
when moving on plane B. By combining (10) and (11), we obtain the mapping y;.+1 = F'(y;), which is
shown in Fig. 8.:This mapping has an attractive area, i.e., the atlractor yo — kyo — 30)'/* < y < kyo. It
0 < k-1 < (4yo)~!, then the mapping inside the attractor is stretching, i.e., |dy .1 /dy;| > 1.
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Fig. 10. Generation of a strange attractor in a three-dimensional system by sequential period-doubling bifurcations

(initially the motion period is 7u): (a) sequence of doublings in the phase space (top) and in speetra (bottom);

(by the strange attractor in the shape of a folded and closed strip which is generated when the motion with
period 274 becomes stochastic (the band section has Cantor structure).

The motion of many three-dimensional systems can be described in terms of this mapping. Take,
for instance, the system whose attractor is a closed widening strip with a fold (Fig. 10). The coordinate
@ on the section is translormed using the mapping in (4).

This mapping has a stationary point @ = 2, = 2% = 0 at all b, and at b > 1 there i$ a second
point x* = 1 — 1/b. This point is stable until b = 3. For b > 3 this nontrivial stationary point is
unstable because the multiplier diy /elay, becomes less than —1 at b = 3, and there is a stable motion
with a period of 2. After this transition the equation w4 =y has two roots. The nondegenerate
stationary point does not disappear, but becomes unstable. The double cycle is stable in the interval
3 < b < 3.45. At =~ 3.45 the double cycle becomes unstable, and a stable four-fold cycle is generated.
At a higher b this cycle also becomes unstable, and a stable cycle with a period of 2% is generated, then
24 ...,2", 4™ and so on. Finally, al b = 3.57 no stable periodic motion is possible, and the system
is completely randomized. On this transition, a strange attractor is generated in the three-dimensional
phase space (Fig. 10). Note, that even for & > 3.57 stable periodic points may exist; for instance, at
[ =3.83 there is a stable three-fold cycle {71

Figures 11 and 12 show the results of a real experiment with the noise generator of Fig. 3.
The sequence ol period-doubling bifurcations and the resulting transition to the chaotic behavior are
clearly scen. A computer- simulation using Eys. (7) and (8) produces similar results as can be seen in
Figs. 13 and 14.

5. Computerized Simulations

The analog signal generated by a stochastic generator is a continuous function of some physical variable’
(such as voltage) versus time (#). For a computer simulation, the signal has to be a set ol values of the
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Fig. 12. Evolution of phése portraits and power spectra recorded in a real experiment [8]: (a) L:1; (b) 2:2: (c) 4%
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Fig. 14. Phase portraits and power spectra for system (7), (8) (computer simulation) [8]: (a) § = 0.060 (1:1);
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“(b) 6§ = —0.067 (2:2); (c) 6 = —0.07 (4:4); (d) § = —0.076 (chaos).
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5.2. -f:’Eunction of Mutual information

An inibontant parameter in the analysis of the sequence {z} is the time interval AT after which the
prehistory is completely forgotten by the system’s ‘memory.” In other words, the state of the system at
to only depends on its states within the time interval [ty — At. 1p) and is not affected by what happened
before tg — AT'. For periodic and quasiperiodic signals AT — oo, but for a stochastic signal the quantity
AT is finite. The limiting case of the stochastic signal is white noise, for which AT = 0. A white-noise
signal at any moment can be treated as ‘new’. The time AT (or 7T = AT /At for a discrete sequence)
can be estimated by the shape of the autocorrelation function. Another approach is to construct the
mutual mtormauon function

Pk I\'+'n1.(57—'-i. :I'J') >
* I ~oln (kA ) ‘ -
: (IN) n < Pl.‘.(:vi)Pl\:+-m(ll:J‘)

where P (2;) is the probability that x; can be described at the k-th moment of time, and Py gam (%, :5)
is the;joint probability of detecting x; at the k-th moment and z; at the (K + m)-th moment. The

function is averaged over all i, j, and k from the set {1,2,...,n}. In practice the mutual information
function can be calculated by the {formula
& : Py v (4, 25)
. Im)= ) | Pppsm (@, ;) In 5o tdes, (14)
’4» UE; ¥ ! Py (11;&')Pk+m(-"vj)

,_.i
5y

The correlation parameter 77 can either be derived from the position of the first maximum of I(m),
if it has been detected, or from the interval of m over which the function I(sn) drops by a factor of e.
Note that the presence of a maximum on the I(m) curve is related to the property of a strange attractor
that after a certain time interval any trajectory returns to the e-neighborhood of the point of its origin.

5.3. Correlation Dimension

H#E
Consider again the time sequence {z;}, j = I,...,n. Following Takens’ procedure, we can
reconstruct the trajectory in a p-dimensional pseudo-phase space using as coordinates %j, Tjim,
x J+2m, .+ Zjx(p—1ym, Where m is a time delay selected in a proper way. As a result, by changing

Jj= 1, .., — pm we obtain a set of p-dimensional vectors that describe the phase trajectory of the
dynamic system. We can prove that if the trajectory is closed in the ordinary phase space, it is also
closed in pseudo-phase space, and if the trajectory is chaotic in phase space, it remains chaotic in the
pseudo-phase space. A more general statement reads: all the basic properties of the attractor to which
the trajectory belongs in phase space are conserved by a transformation to pseudo-phase space.

The positions of two points belonging to the same trajectory, but separated in time, are uncorrelated
in theﬁchaotxc situation corresponding to a strange attractor in phase space and, hence, in pseudo-
phase .space. Since all the points belong to the attractor, there is a spatial correlation, which can be
charac;vgg;nzed by some function. The correlation function is defined as

3 C(r) = lim — Z H(r = |x: = 51, (15)

where H is the Heaviside function. (defined to be equal to unity for positive arguments and to zero for
all the other arguments), ||x; — ;| is the distance between the two points X; = (Z;, Tusm, - - - » Tirtp—m)
and X;:= (Zj, Tj4m, - - -, Tj+(p—1wn) i the p-dimensional pseudo-phase space. The number of points in
Eq. (15) with distances between them less than r can be calculated. For many attractors the function
C(r) b;come a power function as r — 0, i.e.,

{43

lirr})C('r) ~ 'r‘i, (16)
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(ii) the number of points n; to be displayed; the first min(n,,n) points are displayed, where n is the
.«total number of points in the file;

’

(iii)the format of the output data is one column of floating point numbers or one column of integers.

The routine plott.exe creates three files main.dat (if the initial data file includes integers),
power.in, and minfo.in. The latter two files contain initial data for the routines power.exe and
minfo.exe. The file main.dat contains floating point numbers. Other subroutines process the data
in this format and request the file main.dat. If the initial file calibr.dat contains floating point
numbers, the file main.dat is not created and all the subroutines process the initial data file.

2. The routine power. exe creates the power spectrum. It takes as input the data in power.in. The
resulting file power.out contains the amplitudes of the first 65 components of the power spectrum. The
total spectrum includes 128 harmonics, but the harmonics with numbers higher than 65 are identical to
the corresponding lower harmonics since the spectrum is symmetrical.

3. The routine plotp.exe reads power.out file and displays it on the monitor.

4. The routine minfo.exe calculates the mutual information function. It uses the fifty closest
points. The distance 7@ over which the prehistory of the system is lost is found from the first maximum
of the function. Since the correlation dimension is calculated from the same data file as the mutual
information function, it is desirable that m =2 — 3. If i = 1 (f&@ > 3), the initial data were measured
with too large (small) a quantization step in time. In the first case, the data are not reliable, and in the
second case excessive. The initial data for minfo.exe are in minfo.in. The program creates the file
minfo.out with the mutual information plotted against m = 1,...,50.

5. The routine plot.exe graphically displays the mutual information function on the monitor.

The second part of the package calculates the correlation dimension and K5-entropy and is started
by the batch file 2.bat. But, before running it, the file dim-par.in has to be input with the following
data:'*:

(a) ‘-name of the data file with the signal in floating point numbers (after running 1.bat, this file
~exists and its name is recorded in minfo.in and power.in files);

(b) the number of points in the input file n (this information is contained in minfo. in and power.in);
(c) the number of reference points ns (it is recommended that nr > 200);

(d) the initial dimension of the embedding space py (the correlation functions are calculated in
l.__f:_mbedding spaces with dimension p: py < p < pg + 8, a value of py = 2 is recommended);

(e) the delay m (derived from the first maximum of the mutual information function and contained
+in minfo.out).

The file 2. bat sequentially runs the following two routines:

(i) dim-gri.exe, which reads data from dim-par.in and the initial data file, graphically displays the
- -attractor reconstructed in the three-dimensional pseudo-phase space, and calculates the correlation
functions for pg < p < po + 8. The functions are written to output.dat.

<
(i) .dim-gr2.exe, which reads data from output.dat and displays InC,(r) versus Inr and
"dInCp(r)/dInr versus Inr (local slope) at pg < p < po + 8.
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