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Spike-train bifurcation scaling in two coupled chaotic neurons
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We investigate the variation of the out-of-phase periodic rhythm produced by two chaotic neurons
„Hindmarsh-Rose neurons@J. L. Hindmarsh and R. M. Rose, Proc. R. Soc. London B221, 87 ~1984!#… coupled
by electrical and reciprocally synaptic connections. The exploration of a two-parametric bifurcation diagram,
as a function of the strength of the electrical and inhibitory coupling, reveals that the periodic rhythms
associated to the limit cycles bounded by saddle-node bifurcations, undergo a strong variation as a function of
small changes of electrical coupling. We found that there is a scaling law for the bifurcations of the limit cycles
as a function of the strength of both couplings. From the functional point of view of this mixed typed of
coupling, the small variation of electrical coupling provides a high sensitivity for period regulation inside the
regime of out-of-phase synchronization.@S1063-651X~97!50603-9#

PACS number~s!: 05.45.1b, 87.10.1e
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Individual neurons often generate chaotic oscillati
@2,3#, but circuits of them can demonstrate periodic pul
tion. In order to answer the important question of how neu
assemblies get and control regular rhythm, we investig
here the simplest chaotic neural circuit. We work with tw
model neurons coupled electrically and synaptically. The
namics of each neuron is chaotic and spiking bursting@1#
@see Fig. 1a#. Such dynamics are typical for many neurons
cortex @4# and small neural systems like the central patt
generators~CPG! that control the rhythmic motor behavio
of animals @5–8#. The most typical connection betwee
spiking-bursting neurons in CPGs is reciprocal inhibition f
lowed by electrical coupling~see the book@9#!. On a few
occasions, both inhibitory and electrical coupling appear
gether connecting two neurons. It is not a trivial problem
understand the nonlinear dynamics of neurons with such
tagonistic types of coupling. As has been previously sho
@3,10#, sufficiently strong inhibitory coupling between ch
otic neurons organizes regular out-of-phase rhythmic beh
ior. The change of the strength of the inhibitory coupling
responsible for the variations in the number of the spikes
each burst. A saddle-node bifurcation takes place to eli
nate the limit cycleLi , but another limit cycle withi11
spikes in each burst is already present. How is the electr
coupling affecting the dynamics and the bifurcations of su
a system ? Such a connectivity pattern appears contradic
for experimentalists as electrical connections are usu
present to ensure in-phase oscillations while reciprocal in
bition is expected to produce out-of-phase oscillations.
parallel goal for this work that goes along with the inves
gation of the nonlinear dynamics of this complex system
to provide a functional explanation for their appearance
gether.
551063-651X/97/55~3!/2108~3!/$10.00
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We investigate two identical coupled model neuro
which interact through both electrical and reciprocal, inhi
tory coupling. Each model neuron is a Hindmarsh-Rose
cillator, and the differential equations of the coupled syst
are given by

dx1
dt

5x213x1
22x1

32x31I2e iS x11Vc

11exp
x42X

s
D

2ee~x12x4! ~1!

dx2
dt

5125x1
22x2 , ~2!

dx3
dt

52rx31rS~x111.6!, ~3!

dx4
dt

5x513x4
22x4

32x61I2e iS x41Vc

11exp
x12X

s
D

2ee~x42x1! ~4!

dx5
dt

5125x4
22x5 , ~5!

dx6
dt

52rx61rS~x411.6!, ~6!

where I53.281, r50.0012, neuron 1 is given by the var
ables (x1 ,x2 ,x3) and neuron 2 is given by (x4 ,x5 ,x6). e i is
the strength of the synaptic coupling with the reverse pot
R2108 © 1997 The American Physical Society
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55 R2109SPIKE-TRAIN BIFURCATION SCALING IN TWO . . .
tial Vc51.4. Since each neuron must receive an input eve
time the other neuron produces a spike, we sets50.01 and
X50.85. The strength of the electrical coupling isee . The
detailed investigation of the bifurcations and crisis of on
single model can be seen in@10–12#.

Let us consider the local bifurcations of the limit cycles i
the system~6!. We will denote byLk the periodic trajectory
corresponding to the regime withk spikes per burst and we
will name inek

(1,2) the left and right boundaries of the region
@ek

(1)(ee),e i,ek
(2)(ee)#, where the cycleLk is stable. The

pair of multipliers (mk
(1) ,mk

(2)) is connected to every cycle
Lk and indicates the kind of bifurcation at the point
(ek

1 ,ek
2). Then the conditionmk

(1,2)511 determines a sad-
dle-node bifurcation and the conditionmk

(1,2)521 deter-
mines a flip bifurcation. As is well known the codimensio
one saddle-node bifurcation results when one multipli
crosses the complex unit circle at11, which means that one
stableLi and unstableL̂ i limit cycle merge together to anni-
hilate, see Fig. 1~b! as an example.

The analysis of the stability of the cyclesLk for ee50
gives the following results:Lk(11,11) for all k.10. Thus
the bifurcations of the cyclesLk are saddle node. As the
parametere i increases~decreases! a sequence of bifurcations
is observed. At each bifurcation point the cycleLk with k
spikes per burst disappears through a saddle-node bifu
tion.

FIG. 1. ~a! Typical time series generated by a chaoti
Hindmarsh-Rose model.~b! Typical saddle-node bifurcation of one
stable limit ~solid line! and unstable limit~dashed line! cycle for
two coupled Hindmarsh-Rose models, in fact, both limit cycle
~stable and unstable! are very close. The distance between them h
been exaggerated.
ry

r

a-

The bifurcation curvese i5ek
(1)(ee) for k510, . . . ,18 are

presented in Fig. 2. For sufficiently smallee ek
(1,2) ,(ee) can

be approximated by the expressionek
(1,2)5ek*

(1,2)1ak
(1,2)ee ,

whereek*
(1,2) is the bifurcation point corresponding to pure

inhibitory coupling (ee50) andak
(1,2) defines the slope o

the curves. The scaling law for the bifurcation curves is w
approximated by

a~k11!
~1,2! /ak

~1,2!5h@k/~k11!#2, ~7!

wherek is the number of spikes per burst. The value of t
constant is fitted from the slopes of Fig. 2, and it has a va
h51.4260.01. This means that Eq.~7! gives a good de-
scription of the scaling properties.

In order to provide an explanation for this scaling law w
look for a measure of the distance between the limit cycles
close dynamical systems, i.e., for small perturbations of
parameters. This measure of the distance will be used
quantify the direction of the variation of the parameters
the plane (ee ,e i) that achieves a minimal change of the lim
cycle. At the same time, it provides a maximum variati
that is directed towards the bifurcation boundaries. One
imagine that ‘‘minimal’’ lines must have a similar slope t
the bifurcation curves. We can define a distance between
limit cycle for a particular value ofe i* with no electrical
coupling and the limit cycle for any small value ofee . Let us
denote byx* (t,e i* ,0) a solution corresponding to the lim
cycle for ee50, and byx(t,e i*1aee ,ee) a solution of the
limit cycle with e i5e i*1aee and electrical couplingee ,
wherea represents the linear dependence. The distance
tween these two trajectories is defined by

l ee~a!5E
0

T*
@x~ t,e i*1aee ,ee!2x* ~ t,e i* ,0!#2dt, ~8!

whereT* is the period of the limit cyclex* (t,e i* ,0) and
x(0,e i*1aee ,ee) is reset to the nearest point o
x(t,e i*1aee ,ee) to x* (0,e i* ,0), that is, both solutions of the
limit cycles in the functional~8! are set to the same phase.
fig. 3 we can see the computation ofl ee(a) for small ee and

e i*52.0, which corresponds to the limit cycleL14. The mini-

mum is located atâ145211.36, which, in fact, has a little
bit larger value than the bifurcation slope (a145218). The
valuee i*52.0 lies far from the bifurcation curve; whene i is

s
s

FIG. 2. Saddle-node bifurcation curves between stable li
cyclesLk . Solid lines: bifurcation curves for increasing values
e i . Dotted lines: bifurcation curves for decreasing values ofe i .
There is bistability in the regions between the dotted and the s
lines:Li andLi11 coexist.
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getting closer to the bifurcation pointâ14 decreases its valu
to match the bifurcation slopes. We want to find out whet
or not the values for the minima ofl ee(a) follow a similar
scaling law to the bifurcation curves given by Eq.~7!. In Fig.
4 we can see the valuesâ that give the minima of the func
tional as a function ofee for several values ofe i* located in
the middle of the area between the bifurcation curves. If
fit the valuesâk for severalLk given in Fig. 4 to Eq.~7! we
obtainh51.360.04, which means firstly that they are we
approximated and secondly that they are not far from
values obtained for the bifurcations. This shows evidence
the connection between the lines given by the minimal of
functional ~8! and the bifurcation curves.

The joint activity of the reciprocal inhibitory and sma
electrical coupling can be useful from the neurophysiologi
point of view. Since these neurons with such connecti

FIG. 3. Measure of the distance~8! for e i*52.0 and
ee50.0002, which corresponds to the regionL14, as function
of a.
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have created a frequency regulator which allows stable
cillations at selected values over a wide range of opera
frequencies. The bifurcations that the model demonstra
are a welcome robustness arising from the particular c
pling of these chaotic oscillators. Precise values of
chemical couplinge i need not be reached to achieve fun
tionality associated with particular oscillation frequencies
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FIG. 4. a value that gives the minima of the distancel ee(a) as
a function of the electrical coupling in some regions of the sta
limit cyclesLk .
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