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The phenomenon of time-periodic evolution of spatial chaos is investigated in 
the frames of one- and two-dimensional complex Ginzburg-Landau equations. 
It is found that there exists a region of the parameters in which disordered 
spatial distribution of the field behaves periodically in time; the boundaries of 
this region are determined. The transition to the regime of spatiotemporal chaos 
is investigated and the possibility of describing spatial disorder by a system of 
ordinary differential equations is analyzed. The effect of the size of the system 
on the shape and period of oscillations is investigated. It is found that in the 
two-dimensional case the regime of time-periodic spatial disorder arises only in 
a narrow strip, the critical width of which is estimated. The phenomenon 
investigated in this paper indicates that a family of limit cycles with finite basins 
exists in the functional phase space of the complex Ginzburg-Landau equation 
in finite regions of the parameters. 

KEY WORDS: Spatial disorder; complex Ginzburg-Landau equation; 
extended systems; nonlinear nonequilibrium medium; synchronization. 

INTRODUCTION 

The complex Ginzburg-Landau equation (CGLE) 

O,a = a - (1 + ifl) lal2 a +(1 +is)  V2a (1) 

gives the simplest description of the behavior of a space-extended system 
near the Hopf bifurcation point. Equation (1) depends on two real 
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parameters ~ and fl and describes the spatiotemporal evolution of the 
field envelope, i.e., the complex order parameter a(r, t). The CGLE 
demonstrates a great variety of phenomena even in the one-dimensional 
case. These include regimes of phase and amplitude turbulence, It'4-71 
hysteresis, 16"71 and spatiotemporal intermittency ~8~ (see also ref. 9 for a 
survey). This paper is concerned with the investigation of a new 
phenomenon, namely, spatial chaos periodically oscillating in time (see 
also ref. 1). 

Equation (1) has a family of solutions in the form of plane waves 

a(x, t) = (1 - Q2)t/2 exp( - k o t  + iQx)  (2) 

where 

co = Q"(o~- fl) + fl (3) 

In the limiting case Q = 0 ,  the expression (2) and (3) give a spatially 
homogeneous solution with co =ft. Another important class of analytical 
solutions is that of hole solutions ~t~ 

where 

a(x, t) = A ( x )  exp( - -kot  + i6)(x) ) (4) 

A ( x )  = ( 1 - Q2)1/2 tanh(kx) (5) 

dO 
= - Q tanh(kx) (6) 

The frequency so is related to the asymptotic wave number Q by (3). In this 
case, however, Q is no longer arbitrary as for the solution (2). Instead, it 
is determined solely by parameters c~ and fl.~t~ t Jl This is also true for the 
solutions of (1) in the form of a spiral wave. ~2" ttt Note that in the core of 
the defect (hole or spiral) the field amplitude becomes zero and the phase 
of the field is not determined. In the transition across the region of the core 
of the hole (4) the so-called phase slip occurs: c~-'~ the phase changes by 
in a stepwise fashion. 

The remainder of the paper is as follows. Results of computer analysis 
of the plane of the parameters ~,fl are discussed in Section 2. The 
spatiotemporal dynamics of solutions to Eq. (1) in the regime of time- 
periodic spatial disorder is investigated in Section 3. The structural stability 
of this regime relative to the perturbations in the right-hand side of Eq. ( 1 ) 
is considered in Section 4. In Section 5 the possibility to describe the found 
solutions analytically is analyzed. The results obtained refer primarily to 
the one-dimensional case. Possible onset of regimes with an amplitude 
oscillating periodically in time for the 2D CGLE is discussed in Section 4. 
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2. THE PLANE OF THE P A R A M E T E R S  

Consider Eq.(1) in a bounded domain G L = { - L ~ < x ~ < L } ,  
1 ,~ L < co. We seek solutions to this equation among a set of functions of 
class C2(Gz) which meet periodic boundary conditions at the boundary 
x =  _+L of domain GL. We take as a basic space the Banach space 5C4(GL) 
of complex functions with the norm 

11(ill4 = (IGL }aI4 N.y) 1/4 (7) 

Note that with such a choice of the norm, the boundedness of domain GL 
(i.e., the condition L < ~ )  is essential because Eq. ( 1 ) has a broad class of 
solutions that do not belong to ~4(G~_ ) in the region G~ = { - ~ < x < ov } 
[ the norm (7) for these solutions is unbounded in G,~_ ]. 

The stability diagram for the 1D CGLE is shown in Fig. 1, where the 
regions corresponding to qualitatively different regimes of spatiotemporal 
behavior are marked. The Benjamin-Feir (BF) limit is a boundary above 
which all the plane waves (2) are unstable. Defect-mediated turbulence, i.e., 
the turbulence that leads to emergence of phase slips, exists only in the 
region to the right of the c u r v e  A. 16) The line HS is a boundary above 
which the waves radiated by the hole (4) become absolutely unstableJ TM 

Below the line HS but above CS, the holes are stable and the regime of 
"frozen disorder ''(6' 14~ is realized when the field amplitude does not change 
in time. Finally, below the line CS oscillatory instability of the holes 
arises. (15~ The curve H is a boundary above which the defect-mediated 
turbulence (or "amplitude turbulence") is realized for arbitrary initial 
conditions. The situation is more complicated below the curve H and to 
the right of A. As was noted in refs. 6 and 7, two attractors may coexist in 
this region. The first corresponds to the solutions for which large-amplitude 
fluctuations and phase defects (phase slips) are typicalJ a~ The second 
corresponds either to the solutions with a constant field amplitude (below 
the line BF) or to the regime of phase turbulence (above BF, but below H) 
when the amplitude of the field fluctuates slightly near a certain constant 
value while the pase is a continuous function of coordinate and may be 
described by the Kuramoto-Sivashinsky equation/2~ Unfortunately, there 
is no rigorous'criterion for the initial conditions corresponding to different 
types of attractors. However, one can readily distinguish them in practice. 
A small-amplitude attractor has a small basin of attraction and is realized 
only at small disturbances of the spatially homogeneous solution a(x, t)= 
exp( - f i t ) .  The attractor corresponding to large-amplitude fluctuations, on 
the contrary, is realized at arbitrary initial conditions with pronounced 
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amplitude fluctuations. For example, the initial conditions containing 
phase defects (or phase slip) in the neighborhood of which the amplitude 
of the field changes from zero to unity are sure to be valid. 

It was already mentioned that the holes are stable in the region 
between the lines HS and CS, and the temporal dynamics of the solutions 
is trivial: we have harmonic oscillations with frequency co [see (4)]. 2 The 
plane waves radiated by the holes lose their stability above the line HS and 
the field amplitude [a(x, t)] is no longer constant. However, in a broad 
region of the parameters, up to the BF line (see Fig. 1), the anharmonic 
changes of the filed in time are relatively slow. For these values of the 
parameters (the region between the lines HS and BF), a typical solution of 
Eq.(1) corresponding to a large-amplitude attractor contains a great 
number of holes well spaced apart. Thus, the solution may again be 
represented in the form 

a(x, t)= A(x, t)exp(-icot) (8) 

where the frequency co is determined by the hole solution (4) and A(x, t) 
is a slow function of time [the typical scale of time variations of A(x, t) is 
AT>> 2n/co]. The frequency co may readily be found numerically by direct 
measurement of fast oscillations of the real or imaginary parts of the field 
at a chosen point in space. Note that the slow anharmonic variations of the 
field are maximal near the cores of the holes and are negligible at the 
points far from the cores. The oscillations at these points are nearly 
harmonic, so it is natural to choose these points for determination of 
frequency co. 

We will say that the system (1) demonstrates time-periodic spatial 
disorder if the complex amplitude A(x, t) of the field [see (8)] is a periodic 
function of time, 

Equation (1) was investigated numerically by the pseudo-spectral 
method ~16~ based on FFT. We took as the initial conditions an arbitrary, 
spatially chaotic regime with strong amplitude fluctuations and thus 
investigated the solutions that belong to the large-amplitude attractor. 
A typical feature of the solutions corresponding to this attractor is the 
presence of phase defects. The open dots in Fig. 1 label the points at which 
the transition process is completed by the onset of the regime of spatial dis- 
order with a complex amplitude A(x, t) periodically oscillating in time? 
The regime of spatiotemporal chaos is realized above the periodicity 
domain. The lower boundary of the periodicity domain coincides to a good 
accuracy with the curves A and HS. To the left and to the right of the 

2 We emphasize that we speak about  the solutions belonging to the large-amplitude attractor. 
3 The criteria of periodicity will be considered in Section 3. 
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2.5 -1 H 

Fig. 1. Plane of the parameters e and ft. Presented are the Benjamin-Feir limit (BFh the 
boundary of the region with nonzero density of defects (A), the boundary of absolute 
instability of plane waves radiated by a hole (HS), the boundary of oscillatory instability of 
tile core of a hole (CS), and tile upper boundary of phase turbulence (H). Marked are 
the values of the parameters corresponding to the regimes observed: (o) spatial disorder 
periodically oscillating in time; (*) spatiotemporal chaos, (.) frozen disorder or spatially 
homogeneous regime. 

periodicity domain (Fig. 1 ), the spatially homogeneous regime or "frozen 
disorder" is replaced by spatiotemporal chaos as the parameter ~ is 
increased without transition to the regime of time-periodic spatial disorder. 

It is also worthy of notice that the periodicity domain depicted in 
Fig. 1 evidently does not cover the entire multitude of the parameter values 
at which such a regime may be realized because the time needed for the 
periodic regime to set in may be rather large (T>  104) and grows with 
decreasing distance to the upper boundary of the periodicity domain. The 
periodicity domain shown in Fig. 1 is divided into two nonintersecting sub- 
sets. The latter may be attributed to the difficulty in finding the points 
corresponding to the periodic regime. However, we failed to obtain a 
periodic regime at intermediate points, in spite of the great variety of initial 
conditions we, tried and long computation times (T~  5 x 104). 

An important problem related to the plane of the parameters con- 
sidered above is the dependence of the boundaries of the periodicity region 
on the length of the system. Calculations were performed for all the 
parameter values given in Fig. 1 for systems of length 2L=628 and 
2L = 2000. Computer experiment verified that the results were the same in 
both cases. We also made calculations for the system of length 2L = 6000 
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Fig. 2. Spatiotemporal plot of the real part of  the field for fl = 1.15, ct = -0 .9 ,  and 2L = 628. 
The phase of the field was multiplied by e i'~' at each time step, which removed phase advance. 

Fig. 3. Spatiotemporal plot of  the real part of  the field for fl = 1.15, ct = -1 .1 ,  and 2L = 628. 
The periodic evolution of the field in time (Fig. 2) is completely replaced by chaotic behavior 
as the parameters are changed. 
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at some points in the periodicity domain. The oscillatory period was 
invariant relative to the length of the system for all the considered values 
of parameters. Note that the characteristic spatial scale calculated by the 
decrease of the autocorrelation function or of the mutual information func- 
tion ~ 17) was AL ~ l0 ,~ 2L. 

Figure 2 shows the spatiotemporal plot of the real part of the field for 
the values of the parameters from the periodicity domain ( f l= l .15;  
0c=-0 .9 ) .  For comparison, Fig. 3 presents a spatiotemporal plot of the 
real part of the field corresponding to the chaotic regime ( f l= l .15;  
ct = -  1.1). It is clearly seen that developed amplitude turbulence having a 
large number of holes chaotically filling domain GL occurs in both cases. 
Note that the spatial distribution of the holes depicted in Fig. 2 is chaotic 
on the whole, but contains local subsets of the structures arranged quite 
regularly. The time evolutions of the spatial distributions shown in Figs. 2 
and 3 are different in principle. In the first case, the motion of the holes is 
rather complicated; it includes processes of the birth and disappearance of 
the structures, but it is regular in time. In the second case, the motion is 
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Fig. 4. The evolution of the field amplitude in time for f l =  1.15 and ct= - 0 . 9 :  ( a )  at the 
point x~;  ( b )  a t  x 2 # x t . The oscillations of the field have equal periods at different points, but 
differ markedly in shape. 



1172 Bazhenov et  al.  

1.0  

0 .9  

0 .8  

0 . 7  
2 1 0 0 0  

(a) 

1(31 

L I L I I I I I I I I I I I I I I I I I I I I ; I I I I I I I I I I I I I I ~  I 

21050 21100 21150 21200 
TIME 

1.0 

0 .9  

0 .8  

0 .7  i i 

21000 

(b) 
Fig. 5. 

1(31 

; I J l l l l = ,  I I I l ~ l l l l l l l l l l l l l ~ l l l ; l l l l l l  I 
21050 21100 21150 21200 

TIME 

The  same as in Fig. 4, but for fl = 1.25 a n d  ~ = - 0 . 4 .  

completely chaotic and no recursion of spatial distribution occurs. The 
time evolution of the field amplitude measured at different points along the 
x coordinate is shown in Fig. 4. 

The situation is slightly different for the values of the parameters from 
the other subset of the periodicity domain (see Fig. 1). The amplitude 
distribution in this case contains a turbulent spot bordering on the 
constant-amplitude domain. The time evolution of the field amplitude 
measured at different points along the x coordinate is presented in Fig. 5. 

3. FEATURES OF THE PERIODICITY REGIME 

For a. more detailed analysis of the time evolution of the complex 
amplitude A(x, t) of the field we employ the metrics associated with the 
norm (7). We have 
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where p(u, v) is the distance in space L, e4(GL). Consider the quantity 

Apmi,(k) = min p(A(x, to), A(x, t o + t)) (10) 
t ~ ZItk 

where A(x, t) is the complex amplitude of the field and 

A t ~=( t0+  ( 2 k -  1) T/2, t o + ( 2 k +  1) T/2) 

where T is the period of oscillations, k = 1, 2 ..... 4 The quantity p(A(x, to), 
A(x, to+t)) takes into account the contributions of all the points of 
domain GL. Consequently, APmin(k) = 0 for all k = 1, 2 .... if and only if the 
complex amplitude A(x, t) evolves strictly periodically at all the points of 
domain GL. If the periodicity regime is broken at a set of points of measure 
zJx, then Apmin(k)--~ 2Ax ~/4, where 2 is a positive constant. In addition, if 
periodicity is broken randomly and in different portions of the domain GL, 
then the error APn, in(k) will grow as k is increased. The latter is attributed 
to the fact that the same control solution A(x, to) is taken in calculations 
of the function p,o(t) =p(A(x,  to), A(x, to + t)) for all t >~ to. Thus, the 
closeness of Apmi.(k ) to a zero value may be regarded as one of the criteria 
of periodicity. On the other hand, the violation of the periodicity regime 
mentioned above leads to loss of periodicity of the function p,o(t). For the 
control of the periodicity of the function we employed standard methods 
such as calculation of the energy spectrum, the autocorrelation function 
and the mutual information function 117) of the time series p,,,(t). We would 
like to emphasize that we give preference to analysis of the function p,o(t) 
rather than A(t, Xo), Xo~ Gz., because p,o(t) allows for the contributions of 
all the points in the domain GL. 

4 t Figure 6 shows the time dependence of p,0() for f l= l .15  and 
0c = -0.9.  As expected, it is an oscillatory dependence, the distance between 
the functions A(x, to) and A(x, to + t) periodically vanishes to zero, and the 
oscillatory period coincides with the period of the variations of A(x, t) 
(see, e.g., Fig. 4). Note that Eq. ( 1 ) determines the initial variable a(x, t) = 
A(x, t) e x p ( -  icot) rather than the complex amplitude A(x, t) of the field. In 
order to elimihate the linear phase advance, the variable a(x, t) was multi- 
plied at each step by exp(icot), where 09 is a constant frequency of fast 
oscillations of the real and imaginary parts of the field. 

4 Tiffs definition of A t  k becomes meaningless in the absence of periodicity everywhere in GL. 
Consequently, when the periodic regime is broken only in some subset in GL, we take as a 
period T the value of the oscillatory period in the subsets in GL where periodicity is retained. 
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Fig. 6. 
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Distance p4(A(x, to), A(x, to+ t)) versus time for /~= 1.15 and ~ =  --0.9. The function 
p4 oscillates in time with period T ~ 4 3 .  

The value of r found in experiments always has an error of A(o. The 
corresponding error in calculating p,u(t) will build up with increasing t, 
which will inevitably give Apmin(k) > 0 at sufficiently large times even if the 
solution of interest is strictly periodic at all points. Therefore for the 
control of the periodicity of the solution a(x, t) at large time intervals it is 
expedient to consider p(,~l(t) = p(la(x, to)l, [a(x, to + t)[). The function 
p(,~)(t) has the sense of the distance between the field amplitudes and does 
not take into account directly the phases of the compared functions. 
However, a(x, t) and a(x, to + t) are not arbitrary functions; instead, they 
are solutions of Eq. (1) and there is a definite relationship between their 
amplitude and phase. In the case of small-amplitude fluctuations (e.g., in 
the region between the neighboring hole solutions), this relationship may 
be represented as an algebraic dependence of field amplitude on its phase 
(see, e.g., ref. 2). Thus, periodic behavior of the function p(,~)(t) should also 
indicate the periodicity of the phase of complex amplitude A(x, t). This, 
however, is not a rigorous statement. In the general case, the field 
amplitude la(x, t)l may change periodically in time, while the phase 
arg(a(x, t)) does not change periodically. In this case, the function (1) P,o (t) 
is periodic and p,0(t) is nonperiodic. Thus, periodicity of the function (~) P,o (t) 
attests, strictly speaking, only to time periodicity of the field amplitude 
la(x, t)l [or  IA(x, t)[]. We will use the quantity (~) P,0 (t) [it can be calculated 
more accurately than p,0(t)] for investigation of the transition from time- 
periodic spatial disorder to chaos as the parameters are changed. 

Figure 7 shows as an example results of calculations of the energy 
spectrum and autocorrelation function for p(,~ i(t) at fl = 1.15 and ~ = - 0.8 
for 2L=2000.  These results indicate that p(,~)(t) changes periodically in 
time. Close analysis of the behavior of the function p(,~)(t) at large times 
> 1000T (where T is the oscillatory period) reveals an increase of AptS,(k) 
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Fig. 7. (a) Autocorrelation function K(r) and (b) energy spectrum S((2) (the zero harmonic 
is not indicated in the figure) calculated for p~,~ ~(t) at fl = 1.15, ~ = -0 .8 ,  and 2L = 2000. The 
calculations were performed in the time interval 12007", where T ~ 4 2  is the oscillatory 
period. 

as k grows. 5 This indicates, as ment ioned  above,  that  the periodici ty regime 
is b roken  at some points.  However ,  I~ Apm~,(k) increases ra ther  slowly, for 
example,  I 1 ~ ~1 APmin(k)/Apm~(k) < 0.05 for k ~ 1000, fl = 1.15, and ~ = - 0 . 8 .  
Thus  the process is periodic at each t ime instant  nearly at all points  in the 
domain  GL, except a set of  small but  nonzero  measure  Ax(Ax/2L ,~ 1). In 
this sense we "refer to the solutions as periodic everywhere in this paper.  

The measure  of  the set of  points  for which there is no periodici ty 
increases with decreasing distance to the bounda ry  of  periodici ty domain  

5 The function zlpmi.(k ) increases with the increase of k analogously. Figure 6 depicts the first 
four minima of the function p(t) only, but its analysis at large times attest to slow increase 
of ~Pmin(k ). 
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(see Fig. 1). Figure 8 gives a plot of A "(1) '1) versus cc for f l=  1.15. For  - - p '  r a i n  q . 

c~>~ 1 we have I~ - Apm~.(l)<0.05, which indicates that the periodicity 
condition is met almost at all the points of domain GL. Starting from 
c (= -1 .025 ,  the value of Ap~i~(1) grows sharply and Aphid(I )~  
Ap~,~x(1) ~ 50. The latter means total breaking of periodicity. 

A spatiotemporal plot of the real part of the field is given in Fig. 9 for 
f l=  1.15 and ~ =  -- 1.06. Note that, although the value of Apmin(I;~ 1 ) of about 
27.4 indicates that the periodicity is broken at many points, on the whole 
the x versus t plots still looks like a periodic one. 

The function p~,~(t) is essentially nonperiodic, has no pronounced 
maxima, and has a continuous energy spectrum with decaying mutual 
information function at the points that are referred to the region of 
spatiotemporal chaos in Fig. I. In addition, its correlation dimension is 
much greater than unity. All this indicates that A(x, t) has a complicated 
chaotic behavior in time for all or nearly all points in the domain GL. 

The oscillatory period T of the field amplitude for the parameters from 
the periodicity domain is invariant to initial conditions. The time 
dependence of the distance between functions A(x, t o) and A'(x, to+t) 
corresponding to different (chaotic) initial conditions (a(x, 0) and a'(x, 0)) 
is shown in Fig. 10. It is well seen that this dependence is periodic, 
although the distance p(A(x, to), A'(x, to + t)) does not vanish to zero. The 
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Fig. 8. ApI,,l~i~(1) v e r s u s  cc for fl= 1.15. In passing across the boundary of the periodicity 
domain, Ap~i~.(1) grows from ~0.05 (periodicity occurs ahnost everywhere) to ~50 (no 
periodicity). 
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Fig. 9. Spatiotemporal plot of the real part of the field for f l = l . 1 5  and c t = - l , 0 6 .  
Periodicity is broken at many points of domain Go. 

latter may be caused by a constant phase difference of the oscillations 
A(x,  t) and A'(x, t). Indeed, let a'(x, t )=a(x ,  t)exp(icp). Then 

p(A(x,  to), A(x,  to + t) e ~~ 

=( fo  [ tA(x, + IA(-,, 'o+')t 2 
L 

- 2  Re(A(x, to) ,4(x, t o + t) e-i*')] "- dx )  t/4 (11) 
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The same as in Fig. 6, but for spatial distributions corresponding to different initial 
conditions, 
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where ~0 is a constant value. If at the time instant t = T we have A(x, to) = 
A(x, to + T), then 

p(A(x,  to), A(x, to + T) e i~) 

= [ 2 ( 1 -  cos ~o ) ] ' /2 [ ~oL 
114 

IA(x, t0)] 4 dx (12) 

Clearly, the expression (12) is not equal to zero if ~0 4: 2rtn, n =0,  ___1 ..... 

4. STRUCTURAL STABILITY OF PERIODICITY REGIME 

The results obtained indicate that the regime of time-periodic spatial 
disorder is stable and is realized at arbitrary initial conditions corresponding 
to the basin of attraction of a large-amplitude attractor (see Section 2). 
However, the problem of structural stability of this regime, i.e., of stability 
with respect to small perturbations of the right-hand side of Eq. (1), is 
unclear. In this connection we would like to recall ref. 12, in which the 
structural stability of hole solutions was investigated and it was shown that 
perturbations of the form + dlal4a, 6 ~ 1, may either reinforce or break the 
stability of such solutions, depending on their sign. Following ref. 12, we 
investigated the stability of the periodic regime of interest with respect to 
perturbations of the right-hand side of the equation of the form +d  la] 4 a 
(where d ~ 0.0005 and ,,It ~ 0.01 is the integration step). It was found that 
the temporally periodic regime is structurally stable in all the considered 
cases. The period of oscillations is a continuous function of the right-hand 
side of Eq. (1), although the shape of the oscillation varies significantly 
with the change of the sign of perturbation. 

Results of numerical simulation of a 2D CGLE also confirm the struc- 
tural stability of the regime of time-periodic spatial disorder considered 
above. We investigated a region in the form of a narrow strip L.,. x 
Ly(L,. ~>L;.) with periodic boundary conditions in both directions. The 
regime of spatiotemporal chaos that is inhomogeneous in both directions 
was chosen as initial conditions. We set •= 1.15 and investigated two 
cases: L x = 600 and L.,. = 1000 for different values of ~. It was found that, 
for the strip width smaller than the critical value (L~.r~29), a regime of 
time-periodic spatial disorder is established in the system for the values of 
the parameters from the periodicity region (see Fig. 1). The oscillatory 
period does not depend on L,. and coincides with the corresponding period 
found for the 1D CGLE. The field persists to be chaotic only along the x 
axis and is homogeneous along the 3' axis. Thus, the regime of time-periodic 
spatial disorder for the 2D CGLE is actually quasi-one-dimensional. The 
latter circumstance explains the coincidence of the oscillatory periods and 
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periodicity domains for the 1D and 2D CGLE. If the width of the region 
exceeds L.,~, r, there is no time periodicity, and the regime of spatiotemporal 
chaos is retained in the system. 

The periodic regime described above may result from the Hopf bifur- 
cation of a stable spatial distribution containing a family of holes. Such a 
scenario looks quite probable if we consider the system (1) as a chain of 
coupled oscillators. In this representation, such a regime may be inter- 
preted as the result of complete synchronization of the oscillators having 
different intensities and, consequently, different oscillatory frequencies. 
A similar regime of synchronization for a 2D CGLE was investigated in 
ref. 18. 

5. D I S C U S S I O N  

The results of computer experiment presented above indicate that 
there exists a limit cycle with a finite basin of attraction in the phase space 
of system (I). In the general case, the phase space may have a rather com- 
plicated organization and contains a family of periodic trajectories of equal 
periods. This is also confirmed by the fact that different oscillations may be 
self-excited in the system at different initial conditions. The period of 
oscillations is actually the only parameter invariant to the length of the 
system and to initial conditions. 

Computer experiment shows that the transition from a periodic to a 
chaotic regime occurs via intermittency. The time needed for the periodic 
excitations to set in grows with decreasing distance to the boundary of the 
periodicity domain, and, starting from some values of the parameters, we 
fail to detect periodicity. The oscillations near the boundary are periodic at 
some points along the x coordinate and aperiodic at the others. 

Analytical description of time-periodic spatial disorder is a difficult 
problem. We well employ temporal periodicity in order to obtain a family 
of ODEs describing spatial disorder. Taking into consideration that any 
periodic function of period T may be expanded in the Fourier series in a 
complete system of orthogonal T-periodic functions, we can represent the 
solution a(x, t) of Eq. (1) in the form 

a(x, t )=  Ak(x) ~k(t) e -i'~ (13) 
k = O  

where {~b,(t)} is a complete system of orthogonal functions of period T. 
One need not necessarily write the term exp(-i~ot) in an explicit form, but 
such a representation is quite natural if one recalls that the spatially 
homogeneous solution to (1) has the form a( t )= exp(-icot). 
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An approximate solution to (1) can be written as a finite series 

( m I a, , , (x , t )= ~ Ak(x)  tpk(t) e -i~ (11) 
\ k = 0  

Since the solution (14) is not an exact solution of Eq. ( 1 ), the difference 

Oa,,, ~ " 
F(a,,,) - ~ - - a , , ,  + (l  + ifl) [a,,,[- a , , , - (  l + ioO O-a'' = Ox 2 (15) 

cannot be identical to zero. Hence there arises the problem of minimizing, 
in a certain sense, this difference by choosing an appropriate function 
A t ( x )  ( k = 0  ..... m). 

By using the Galerkin method, we find a system of ordinary differential 
equations (ODE) for the variables A~.(x): 

T ( m / 
I_ Fk E At(x)I~k(t)e-i'~ ~s (/) ei~ dt=O, s = 0  ..... m (16) 

\k=O 

where ~ is a complex conjugate of ~. 
The function a,,,(x, t) is not an exact solution of (1), but it can be 

represented as an exact solution of a reduced system aa,,,/at =Lm(S(a, , , )) ,  
where S is the operator from the right-hand side of (1) and L,,  is the 
operator of truncation of the Fourier series. 

In passing from the series (13) to the finite series (14) the choice of a 
system of orthogonal T-periodic functions { ~bk(t) } becomes of fundamental 
significance. The system of functions of the form qJk(t)=exp(++_ikg2t), 
E2 = 2 n / T  that is acceptable in many cases is not quite suitable here because 
the real oscillations observed in the system differ strongly from the 
harmonic ones (see Figs. 4 and 5) and a great number of harmonics must 
be taken into account for adequate description of the behavior of the 
system. Nevertheless, we can assert that for any time-periodic solution 
a(x, t) of Eq. (1) there exist a Galerkin approximation of a sufficiently high 
order which approximates this solution with preset accuracy. The 
approximate solution a,,,(x, t) at each fixed instant of time is described by 
a finite-dimensional ODE system. Consequently, at each time instant t = t 0, 
the spatial field distribution a(x, to) observed in numerical experiment is 
approximated to arbitrary accuracy by the solution of a finite-dimensional 
dynamical system (along x) for a,,(x, to). However, it is still to be found 
whether the exact solution a(x, to) is finite-dimensional. 

The considerations presented on the origin of the observed 
phenomenon are confirmed by recent results obtained in ref. 19, where an 
extended system in the form of a "one-way coupled logistic lattice" was 
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investigated. It was revealed that spatial chaos with temporal periodicity 
may stably exist in a broad region of parameters, in particular, at 
sufficiently strong coupling. Such a regime appears to be quite natural in 
terms of the synchronization phenomenon since the medium is discrete and 
unidirectional. In this case, however, forced synchronization occurs instead 
of mutual synchronization of structures (or oscillators) because the coupling 
in the chain is unidirectional, whereas the spatial disorder is determined by 
the difference of intensity pulsations in each element of the chain. 
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