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Slow periodic EEG discharges are common in CNS disorders. The pathophysiology of this aberrant rhythmic activity is poorly under-
stood. We used a computational model of a neocortical network with a dynamic homeostatic scaling rule to show that loss of input (partial
deafferentation) can trigger network reorganization that results in pathological periodic discharges. The decrease in average firing rate in
the network by deafferentation was compensated by homeostatic synaptic scaling of recurrent excitation among pyramidal cells. Synap-
tic scaling succeeded in recovering the network target firing rate for all degrees of deafferentation (fraction of deafferented cells), but
there was a critical degree of deafferentation for pathological network reorganization. For deafferentation degrees below this value,
homeostatic upregulation of recurrent excitation had minimal effect on the macroscopic network dynamics. For deafferentation above
this threshold, however, a slow periodic oscillation appeared, patterns of activity were less sparse, and bursting occurred in individual
neurons. Also, comparison of spike-triggered afferent and recurrent excitatory conductances revealed that information transmission
was strongly impaired. These results suggest that homeostatic plasticity can lead to secondary functional impairment in case of cortical
disorders associated with cell loss.
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Introduction
Repetitive low-frequency discharges is the most common elec-
troencephalographic (EEG) abnormality in a broad spectrum of
diseases with CNS manifestation (e.g., encephalitis, tumors)
(Bauer and Pieber, 1974; Niedermeyer, 2005). These periodic
EEG patterns at low frequencies occur over prolonged epochs, in
contrast to epileptic seizures that are usually transient and evolv-
ing (Kuroiwa and Celesia, 1980). Although periodic complexes
are a typical clinical finding in encephalopathies associated with
structural cerebral damage (Fisch, 1999), the underlying patho-
physiology remains unknown (Brenner and Schaul, 1990; Nied-
ermeyer, 2005). Understanding the cellular and network basis of
this aberrant EEG state may facilitate the development of clinical
intervention approaches to reduce disruption of neuronal func-
tion during cortical disease.

The cortex is endowed with feedback control mechanisms
(i.e., homeostatic plasticity) that maintain activity levels of neu-
rons and neural circuits (Davis, 2006). In particular, fast excita-
tory synaptic transmission is enhanced by synaptic scaling in re-
sponse to prolonged activity blockage (Desai, 2003; Rich and

Wenner, 2007; Turrigiano, 2007). Here, we used computational
modeling to investigate how homeostatic plasticity reorganizes
network dynamics in response to decrease in afferent input
caused by transient or irreversible loss of presynaptic neurons. In
our model, global homeostatic plasticity upregulates the recur-
rent excitatory synaptic conductances to compensate for deaffer-
entation of a random subset of neurons (partial deafferentation).
We hypothesized (1) that the average firing rate of the network is
recovered and (2) that the distribution of firing rates across cells
and the fine temporal structure of the spike patterns in individual
cells differ from before deafferentation. According to our hy-
pothesis, these changes in network dynamics are attributable to
the shift in balance between afferent and recurrent excitatory
inputs caused by partial deafferentation (reduced afferent excita-
tion) and synaptic scaling (increased recurrent excitation) (Hou-
weling et al., 2004). Of particular interest is the interaction be-
tween deafferented and intact cells during this homeostatic
reorganization process. Our hypothesis is motivated (1) by recent
studies of homeostatic plasticity in vivo (Desai et al., 2002; Goel
and Lee, 2007; Mrsic-Flogel et al., 2007) and (2) by observation of
gradual recovery of activity levels over weeks with altered EEG
patterns in response to partial cortical deafferentation (Topolnik
et al., 2003a,b; Nita et al., 2006, 2007).

In our simulations, we found a critical degree of partial deaf-
ferentation (fraction of neurons deafferented) that determined
the final outcome of homeostatic network reorganization. For
deafferentation degrees below this threshold, network dynamics
recovered without any qualitative reorganization that would pre-
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dict macroscopic EEG aberrations. At the critical deafferentation
degree, however, a relative abrupt change in network dynamic
reorganization occurred with the following key characteristics
that were absent in the intact and the moderately deafferented
network: (1) prominent periodic network activation, (2) de-
creased sparseness, (3) bursts of action potentials in individual
cells, and (4) strongly nonlinear recovery time course of average
firing rate. On the basis of these results, we suggest that the clin-
ically ubiquitous periodic complexes in CNS disorders with cor-
tical manifestation may be caused by a paradoxical inability of
homeostatic plasticity to maintain sparse, asynchronous network
activity in case of change in input structure by partial
deafferentation.

Materials and Methods
Neuron models. We used two-compartment conductance-based neuron
models (Mainen and Sejnowski, 1996) as described previously in detail
(Frohlich and Bazhenov, 2006; Frohlich et al., 2006) Briefly, neurons
consisted of two electrically coupled compartments, the dendritic and
axosomatic compartment. The coupling strength of these two compart-
ments determined the firing pattern of the cells in response to a simulated
depolarizing current injection [regular spiking for pyramidal cells (PYs)
and fast-spiking for inhibitory interneurons (INs)]. Each compartment
was endowed with a set of ionic conductances to model a specific com-
plement of ion channels. The axosomatic compartment contained tran-
sient voltage-gated sodium and delayed-rectifying potassium channels
for spike generation (GNa � 3000 mS/cm 2, GKv � 200 mS/cm 2), persis-
tent sodium channels (GNaP � 4.0 mS/cm 2), and voltage-independent
potassium leak channels (GKl � 0.1 mS/cm 2). The dendritic compart-
ment included high-threshold calcium, calcium-activated potassium,
slowly activating potassium, persistent sodium, hyperpolarization-
activated depolarizing mixed cationic, potassium leak, and mixed cat-
ionic leak ion channels (GHVA � 0.016 mS/cm 2, GKCa � 3.5 mS/cm 2,
GKm � 0.01 mS/cm 2, GNaP � 4.0 mS/cm 2, Gh � 0.05 mS/cm 2, GKl �
0.01 mS/cm 2, GL � 0.033 mS/cm 2). INs had a similar ion channel com-
plement (different values for GNa � 2500 mS/cm 2, GNaP � 0.0 mS/cm 2

in both compartments; dendritic leak conductance, GKl � 0.005 mS/
cm 2, GHVA � 0.01 mS/cm 2, GKCa � 0.3 mS/cm 2, GKm � 0.0 mS/cm 2).
Equations and parameters for these ion channels and intracellular cal-
cium dynamics were described previously in detail (Frohlich and Bazhe-
nov, 2006). Network heterogeneity was introduced by drawing random
values for the potassium leak conductance from a normal distribution
(mean � SD, 0.01 � 0.001 mS/cm 2 for PYs; 0.005 � 0.0005 mS/cm 2 for
INs).

Network model. The cortical network model consisted of 80 PYs and 20
INs. Similar to previously studied network configurations (Bazhenov et
al., 2002; Frohlich et al., 2006), synaptic connectivity in the model was
local such that each PY projected to five neighboring PYs on each side
(both AMPA and NMDA receptor channels). Also, each PY targeted
three neighboring INs (both AMPA and NMDA receptor channels) that
in turn backprojected to 11 neighboring PYs (GABAA receptor chan-
nels). In addition, all PYs and INs received independent afferent input
that was modeled by a 100 Hz Poisson process. Postsynaptic receptor
channels were modeled with a simplified first-order kinetic scheme of
binding and unbinding of neurotransmitter described by instantaneous
rise and exponential decay of synaptic conductances (Destexhe et al.,
1994). To increase computational efficiency, each cell had a single syn-
aptic conductance (for each receptor channel type) that was updated by
the according change in conductance each time a spike in one of the
presynaptic cells occurred. Maximal total synaptic conductances per cell
were chosen such that (1) both afferent input and network input con-
tributed to the firing before deafferentation and (2) average cross-
correlogram of action potential firings in PY cells was flat before deaffer-
entation. Synaptic conductances for connections within the network
were gAMPA(PY–PY) � 3.2 nS, gNMDA(PY–PY) � 0.32 nS, gAMPA(PY–IN) � 3.0
nS, gNMDA(PY–IN) � 0.30 nS, and gGABA(IN–PY) � 4.0 nS. These maximal
synaptic conductances were divided by the number of synapses targeting

a given cell to determine the unitary conductances. AMPAergic synapses
between PYs included short-term depression with use constant U � 7%
per action potential and exponential recovery with time constant � � 700
ms (Tsodyks and Markram, 1997). Afferent AMPAergic input conduc-
tances were set to gPY � 0.5 nS and gIN � 1.0 nS for PYs and INs,
respectively.

Deafferentation and homeostatic plasticity. We modeled neuronal dys-
function with partial deafferentation. In case of deafferentation, the fre-
quency of the afferent excitatory Poisson input was reduced from 100 to
50 Hz. Afferent input was simultaneously reduced for all deafferented
cells. We simulated networks with different fractions of neurons subject
to deafferentation (deafferentation degree D with values between 10 and
100%). For example, a deafferentation degree D � 40% indicated that a
random 40% of both PYs and INs were subject to reduced (50 Hz)
afferent excitatory synaptic input. The subset of deafferented cells was
random. We assumed (1) that different diseases accompanied by varying
degrees of pathological changes are modeled by different values of deaf-
ferentation degree D and (2) that disease progression corresponds to
increasing values of D. Although a direct mapping from values of D to
morphometric neuropathology data are not feasible, we used data on
cortical cell loss in brains from patients with Creutzfeldt-Jakob disease
(CJD) to determine a rough estimate of the upper limit of deafferentation
to be considered [up to 50% cell loss as a function of duration of dement-
ing phase, in our model corresponding to 50% loss of inputs (input
reduction from 100 to 50 Hz) in all cells, D � 100% (Masters and Rich-
ardson, 1978)]. We chose CJD data for this estimate because EEGs from
patients with sporadic Creutzfeldt-Jakob disease exhibit periodic activa-
tion that ranges from frontal rhythmic delta activity to periodic sharp
wave complexes as function of disease stage (Wieser et al., 2006).

We simulated four different random deafferentation patterns for each
deafferentation degree. Firing rate analysis was based on the average of
these four simulations. In all simulations, the firing rate of the network
was computed every 4 s by averaging over all PY spikes in the preceding
4 s interval. AMPA conductances G between PYs were then updated at
these checkpoints by adding �G � � ( f* � f )G, where � is the scaling rate
(here � � 0.05), f* is the target firing rate (5 Hz), and f is the current
average firing rate. In a subset of simulations (see Fig. 4), we applied the
same homeostatic scaling rule but with opposite sign to the inhibitory
conductances onto PYs (homeostatic downregulation of synaptic inhibi-
tion). Our homeostatic scaling rule ensured multiplicative scaling of the
synapses. In the limit in which the activity mismatch f* � f is small, our
homeostatic plasticity rule represents a discrete-time implementation of
a first-order exponential recovery scheme. If not stated otherwise, time
points in the figures correspond to the checkpoints in which the firing
rate was computed and the synaptic conductances were updated based
on this homeostatic scaling rule. The choice of the nature of this updating
rule was motivated by (1) the computational impossibility to implement
the biological timescale for homeostatic scaling in such a model (hours to
days) and (2) the fact that homeostatic regulation of synaptic conduc-
tances is sufficiently slower than the effect of a change in conductance on
the firing behavior. We therefore separated the two timescales and ap-
proximated the slow synaptic regulation with a discrete-time update
scheme. Intervals between update time points can therefore be consid-
ered of arbitrary length in time and are only meaningful compared with
other simulations with the same update rule (e.g., different deafferenta-
tion degrees).

Data analysis. Simulated local field potential (lfp) was computed by
averaging PY spike trains smoothed with a Gaussian kernel (SD of 20
ms). For presentation purposes, the lfp trace was filtered with a fifth-
order Butterworth bandpass filter (0.5 and 400 Hz). The spectrogram of
the lfp trace was determined by the Matlab (MathWorks, Natick, MA)
function specgram with 5 s window size and 2 s overlap between win-
dows. The spectrogram was smoothed by 10-fold oversampling and two-
dimensional linear interpolation. Averaged cross-correlograms were cal-
culated by computing the cross-correlation between all possible pairs of
40 randomly selected PY smoothed spike trains. Mean cross-
correlograms are shown in black, and the corresponding SEM are shown
in gray. Burst index quantifies the relative fraction of interspike intervals
(ISIs) shorter than 50 ms in all PYs for a given 4 s interval. This definition
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of burst index differs from more commonly definitions that require in-
traburst interspike intervals to be shorter than 10 ms. Our choice is
motivated by the longer duration of intraburst interspike intervals in our
simulations. In all cases, we checked for bimodality of the interspike
interval distribution by visual inspection to ensure that nonzero burst
index indeed reported bursting and not high-frequency tonic firing. The
spike-triggered average afferent and recurrent excitatory conductances
were determined from the corresponding conductance time courses in
all PYs of the network model for a 10 s interval. For each spike in every
PY, a 500 ms window before spike occurrence was extracted from the
corresponding conductance time courses. The average spike-triggered
conductance was then determined by averaging these waveforms. The
spike-triggered total excitatory conductance was determined by adding
the spike-triggered afferent and recurrent spike-triggered synaptic con-
ductances. If not noted otherwise, the figures show mean values (error
bars indicate SEM) that were determined by pooling the four simulations
with different random deafferentation patterns for a given degree of
deafferentation. All analysis was performed with custom-written Matlab
(MathWorks) routines.

Results
Homeostatic plasticity of excitatory synapses may control overall
activity levels in neural circuits. Decrease in activity level caused
by partial loss of excitatory input can be compensated by synaptic
scaling of the remaining excitatory synapses. We studied how a
dynamic homeostatic scaling rule for recurrent excitatory syn-
apses reorganizes network dynamics in case of input loss by par-
tial deafferentation. In our computational model of a cortical
circuit, homeostatic synaptic scaling succeeded in recovering tar-
get average frequency of pyramidal cells for all deafferentation
degrees tested (D � 10 to 100%). We found, however, substantial
reorganization of fine temporal structure of spike trains, network
synchronization, and firing rate distributions as a function of
deafferentation degree. The interplay between cells with intact
input and deafferented cells shaped the dynamics of the recovery
from deafferentation. Although in reality homeostatic plasticity
occurs on the timescale of many hours to days, we applied the
homeostatic scaling at regularly spaced time points (4 s intervals)
because of technical limitations in simulation length. The under-
lying approximation of this separation of timescales is well justi-
fied by the fact that the effect of changes in synaptic conductances
on firing rates is immediate, whereas homeostatic scaling trig-
gered by changes in activity levels occurs on a much slower time-
scale (see Materials and Methods). Time as denoted on the ab-
scissa in the following figures represents the time points at which
the homeostatic scaling rule was applied. Because of the compres-
sion of the homeostatic plasticity timescale, these “time” values
have no absolute meaning but rather serve as a reference for
comparison of different recovery time courses.

Random partial deafferentation can cause periodic
network activation
Severe deafferentation (D � 90%) of a cortical network model
composed of PYs and INs caused an initial drop in activity level
(Fig. 1, arrowhead) with subsequent recovery of activity by up-
regulation of recurrent synaptic excitation (membrane voltages
of PYs and INs color coded in Fig. 1A; lfp in B; smoothed time-
dependent frequency decomposition in C). Before deafferenta-
tion, the network exhibited asynchronous firing (low-amplitude
lfp, mean � SD firing rate of PYs 5.03 � 3.77 Hz) in response to
independent Poisson input to all PYs and INs (frequency, 100
Hz). After deafferentation, as recovery of activity level by synaptic
scaling progressed, slow periodic activation of the network oc-
curred (oscillations in lfp in Fig. 1B; red band around 1 Hz in

spectrogram of lfp in C). Eventually, average PY firing rate recov-
ered to 5.02 � 2.83 Hz (mean � SD). In contrast to before deaf-
ferentation, individual PYs fired bursts of action potentials (Fig.
2A, zoom in of network activity after scaling from Fig. 1A; sample
membrane voltage trace in B; dominant peak for small interspike
intervals in D “after scaling”). The different temporal fine struc-
ture of the network activity before deafferentation and after syn-
aptic scaling is reflected in the averaged cross-correlograms (Fig.
2C, average in black, gray lines delimit SEM). Before deafferen-
tation, network activity was asynchronous (flat trace). After syn-
aptic scaling, the cross-correlogram revealed periodic modula-
tion of firing activity with an approximate period of 950 ms
(measured from central peak to first sideband peak, oscillatory
cross-correlogram). Synaptic scaling changed not only the spik-
ing patterns but also the distribution of firing rates across PYs.
Before deafferentation, the distribution of resting potentials de-
fined a decaying distribution of firing rates with a peak for cells
with firing rate below 1 Hz (Fig. 2E, left). After scaling, the peak in
distribution of firing rates was shifted to higher rates (Fig. 2E,
right).

We expected the steady-state network dynamics after synaptic
scaling to depend on the deafferentation degree. Therefore, we
simulated the same network for different deafferentation degrees
(Fig. 3A, rastergrams; B, average cross-correlograms; network
dynamics after synaptic scaling). For weak deafferentation (D �
20%, top row), we found no oscillatory firing (flat average cross-
correlogram). Very mild oscillatory modulation of instantaneous
firing rates occurred for moderate deafferentation (D � 40 and
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Figure 1. Network reorganization after partial deafferentation (deafferentation degree
D � 90%). A, Activity map of all 80 PYs (top) and 20 INs (bottom). Cool and hot colors indicate
hyperpolarization and depolarization, respectively. Deafferentation with consecutive drop in
network activity (arrowhead). Recovery of target firing rate by homeostatic scaling resulted in
prominent periodic network activation. B, Simulated lfp. Same timescale as in A. High-
frequency activity with low amplitude before deafferentation. Drop in lfp level after deafferen-
tation (arrowhead). Recovery of activity level is characterized by slow high-amplitude lfp oscil-
lations. C, Spectrogram of lfp. Same timescale as in A. Cool and hot colors indicate low and high
power on arbitrary logarithmic scale, respectively. Drop in power after deafferentation (arrow-
head). Prominent peak in power at approximately 1 Hz after homeostatic scaling (dark red
band).
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60%, middle rows). For strong deafferentation (D � 80 and
100%, bottom rows), however, we observed pronounced syn-
chronized periodic network activation. In summary, cross-
correlograms progressively showed more oscillatory structure
with growing period for increasing deafferentation degree (Fig.
3B, from top to bottom). Thus, the more severe the deafferenta-
tion, the slower and the more pronounced the periodic activation
patterns of the network became. Interestingly, the oscillatory
structure of the cross-correlograms did not increase linearly with
deafferentation degree. Instead, we observed a rather abrupt
transition between D � 60% (low-amplitude cross-correlogram)
and D � 80% (high-amplitude cross-correlogram).

In principle, the oscillatory network activity that we found in
deafferented networks after homeostatic scaling may not occur if
homeostatic scaling of synaptic inhibition is included in the
model. Specifically, homeostatic downregulation of inhibitory
synapses may reduce the required scaling of AMPAergic PY–PY
synapses and therefore prevent the occurrence of network-wide

bursts. However, simulations in which we included homeostatic
downregulation of inhibition revealed only a very small reduc-
tion in PY–PY scaling (�3%) and no change in macroscopic
network dynamics (data not shown). To exclude the possibility
that this absence of a substantial effect is the result of the relatively
weak synaptic coupling between PYs and INs in our model, we
performed additional simulations of a network with matched
firing behavior before deafferentation but stronger coupling be-
tween PYs and INs ( gAMPA(PY–PY) � 6.0 nS, gNMDA(PY–PY) � 0.6
nS, gAMPA(PY–IN) � 5.0 nS, gNMDA(PY–IN) � 0.50 nS, gGABA(IN–PY)

� 35.0 nS, and gPY � 0.7 nS and gIN � 0.9 nS for PYs and INs)
(Fig. 4). A comparison between networks with and without in-
hibitory homeostatic scaling revealed a modest difference in scal-
ing of PY–PY synapses (Fig. 4A, differences significant for all
deafferentation degrees, p � 0.05). Nevertheless, the overall mac-
roscopic reorganization into a network with pathological
network-wide bursts remained the same in both cases (Fig. 4B,C,
for D � 100%). This limited effect is caused by the reduced firing
rate of the INs after deafferentation attributable to loss of afferent
excitatory input. Whereas the PYs recovered their firing rate by
upregulation of the PY–PY connection strength, the INs only
partially recovered their firing rate. Given this limited role of
homeostatic scaling of inhibition in the mechanisms studied
here, the remainder of this study was performed with networks
that did not include homeostatic scaling of inhibition.

Roles for deafferented and intact cells in recovery of target
activity level
So far, we have discussed the “steady-state” network dynamics
after recovery of the target firing rate by synaptic scaling. Now, we
consider the temporal evolution of activity during synaptic scal-
ing (Fig. 5). The following key observations become evident. (1)
Firing rates as a function of time for increasing degrees of deaf-
ferentation (color coded in Fig. 5A, D � 20 to 100%, panels from
left to right) show that recovery of overall activity levels by syn-
aptic scaling is shaped by cells with high firing rate before deaf-
ferentation (continuous horizontal bands of hot colors in Fig.
5A). After synaptic scaling, nonzero firing rates occurred prefer-
entially in cells in close proximity to these highly excitable cells.
(2) For strong degrees of deafferentation (D � 80 and 100%),
network-wide activation occurred and cells that were silent be-
fore deafferentation became active (decreased sparseness com-
pared with before deafferentation). The observed reorganization
of global network dynamics in response to partial deafferentation
by homeostatic synaptic scaling is a result of interplay between
the excitability of deafferented and intact PYs cells. Therefore, we
below compare the initial firing rates � before deafferentation
(measure of excitability because all cells received the same
amount of afferent input), firing rates � immediately after deaf-
ferentation, and firing rates � after recovery of target activity level
by synaptic scaling (time points indicated in Fig. 5A).

We next established the relative contributions of deafferented
and intact cells to the recovery of the target firing rate as function
of their excitability. In theory, it is conceivable that reorganiza-
tion is mediated by (1) intact cells increasing their firing rate, (2)
deafferented cells recovering their firing rate, or (3) a combina-
tion of the latter two mechanisms in any temporal order. To test
which hypothesis is correct, we separated intact (blue triangles)
from deafferented (red squares) cells and plotted firing rate �
(immediately after deafferentation) and firing rate � (after syn-
aptic scaling), respectively, as a function of initial firing rate �
(before deafferentation) (from left to right in Fig. 5B,C, from 20
to 100% deafferentation; � as a function of � in B; � as a function
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Figure 2. Network activity after deafferentation (D � 90%) and homeostatic synaptic scal-
ing (zoom of Fig. 1 A, after synaptic scaling). Average firing frequency across network matched
target rate f* � 5 Hz. A, Strong periodic activation of entire PY population (bands of lighter
color). B, Sample membrane voltage trace exhibits low-frequency bursting. Some action po-
tentials are truncated as a result of finite sampling of membrane voltage. Same timescale in A
and B. C, Average cross-correlogram for PY activity before deafferentation (flat line) and after
homeostatic scaling triggered by deafferentation (oscillatory trace). D, Histogram of ISIs before
deafferentation (left) and after homeostatic scaling in response to deafferentation (right).
Dominant peak for short ISI after scaling indicates bursting in individual cells. E, Firing rate
distribution across the network. Peak for very low firing rate before deafferentation (left) is
shifted to higher frequencies and less prominent after synaptic scaling (right).
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of � in C). Intact cells (blue) suffered little loss of activity for mild
to moderate deafferentation (firing rates � crowded along the
diagonal). For stronger deafferentation, however, rates of PYs
with intact input fell consistently below the diagonal (Fig. 5B,
D � 80%). Quite in contrast, the drop in firing rate for deaffer-
ented cells (shown in red) depended on their intrinsic excitability
(i.e., firing rate � before deafferentation). Specifically, PYs with
low � turned silent in response to deafferentation and thus clus-
tered on the x-axis. Other PYs (i.e., those with relatively high
firing rate � before deafferentation) also suffered from a decrease
in firing rate but stayed active after deafferentation. After homeo-
static scaling (Fig. 5C), PYs with intact afferent input assumed
firing rates � above initial firing rates � for all degrees of deaffer-
entation (blue triangles above diagonal). For deafferented PYs,
we found two distinct patterns of behavior depending on the
degree of deafferentation. Relatively little increase in firing rates

caused by synaptic scaling occurred in case
of weak to moderate deafferentation (by
comparison of B and C in Fig. 5). In case of
strong deafferentation, however, we ob-
served complete recovery of initial firing
rates for some fraction of deafferented cells
(red squares on and above diagonal for
D � 80 and 100%).

Next, we quantified the temporal dy-
namics of the activity levels of intact and
deafferented cells during recovery of target
firing level by homeostatic scaling. Specifi-
cally, we considered the case of 80% deaf-
ferentation in more details (Fig. 6A,B) to
determine the time course and relative or-
der of changes in firing frequency in (1)
intact cells (blue triangles), (2) deaffer-
ented cells with initial firing frequency �
below target rate f* (� � f*, red diamonds),
and (3) deafferented cells with initial firing
frequency � above target firing rate f* (� �
f*, red squares). We defined the frequency
shift �f for a given time point t as the arith-
metic difference between the firing rate at
that time point t and the initial firing rate �
before deafferentation. In essence, this
measure indicates the change in activity
level relative to baseline, i.e., before deaf-
ferentation. First, we computed the fre-
quency shift for the time point immedi-
ately after deafferentation (�f � � � �) to
quantify the drop in activity by deafferen-
tation (histogram in top row in Fig. 6A).
Second, we determined the frequency shift
for a time point after homeostatic scaling
(�f � � � �), which described the change
in firing rate induced by deafferentation
and subsequent reorganization by homeo-
static scaling (bottom row in Fig. 6A). Spe-
cifically, values of �f larger than zero indi-
cate that the neurons were more active than
they had been before deafferentation, and
values smaller than zero indicate that the
neuron did not recover its pre-
deafferentation firing rate. As expected, the
peaks of these frequency-shift distributions
moved toward more positive values as time

and therefore homeostatic scaling progressed (by comparison of
top to bottom row in A). To gain a more complete picture of the
reorganization dynamics, we then extended this analysis by com-
puting the frequency shift �f for all PYs for each time point at
which the homeostatic rule updated the synaptic connections.
We fitted the histograms of �f values at each time point with
normal distributions and then determined the respective mean
values. These mean values were then plotted as a function of time
(D � 80% in Fig. 6B; D � 40% in Fig. 6C). These time courses of
mean values determined from frequency-shift histogram fits ex-
hibited sigmoid shapes for all three subpopulations (Fig. 6B,C).
These plots show how the three subpopulations contribute to the
recovery of the target firing rate at different time points during
the recovery process. We here quantify the temporal order of
these contributions by comparing the time point at which half of
the frequency shift has occurred (half-maximum of sigmoid
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curves). Specifically, half-maximum frequency shift occurred al-
most simultaneously for cells with intact input (blue triangles)
and deafferented cells with � � f* (red squares, more active cells).
Only with a marked delay, however, deafferented cells with � � f*
(red diamonds, less active cells) increased their firing rates (Fig.
6B). Thus, the more excitable deafferented cells (� � f*) contrib-
uted to the early increase in activity levels after deafferentation
and the less excitable cells (� � f*) mostly mediated the later
increase in activity levels. In contrast, for D � 40% (Fig. 6C),
recovery of target activity level was almost exclusively mediated
by intact PYs and deafferented PYs with � � f* (blue triangles and
red squares, respectively). In summary, instead of further up-
regulating the firing rate of the more excitable cells in more deaf-
ferented networks (e.g., D � 80%), the scaling process recruited
PYs that were silent or displayed only low activity level before
deafferentation. Therefore, reorganization of cortical network
dynamics by synaptic scaling consists of several distinct processes

occurring in a well defined temporal sequence as a function of the
severity of partial deafferentation.

Transition point to pathological network-wide activation
So far, we have established that the recruitment of less excitable
deafferented cells constituted a major difference between moder-
ate and severe deafferentation by comparison of the time courses
of the respective mean frequency shifts for different deafferenta-
tion degrees. We therefore expected to find different firing rate
distributions after synaptic scaling as a function of deafferenta-
tion degree. Specifically, our previous analysis suggests that
strong deafferentation degree will reduce the fraction of silent
cells (decreased sparseness). We quantified the time course of
firing rates on a cell-by-cell basis by plotting the time-dependent
frequency histograms for D � 20 to 100% (Fig. 7A, from left to
right, black boxes indicate data replotted in B and C, deafferen-
tation time point marked by arrowhead). We had chosen the
initial distribution of PY membrane voltages such that, for intact
afferent input, a limited fraction of cells remained silent (hot
colored patches in top left corners in Fig. 7A). Deafferentation
transiently increased the number of silent cells. Indeed, whereas
for mild to moderate deafferentation the fraction of silent cells
recovered (in fact, in some cases to values higher than before
deafferentation), more severe deafferentation qualitatively
changed the firing rate distribution of the network such that all
cells were active, resulting in a shift of the peak of the firing rate
distribution as a function of time (Fig. 7A, rightmost panel). We
next considered the time course of silent cells (split into two
subpopulations, cells with intact input and deafferented cells, in
blue and red, respectively, in Fig. 7B). In case of mild deafferen-
tation, we observed a quite linear decrease in silent cells during
synaptic scaling, mostly mediated by intact cells (blue band be-
comes narrower and red band assumes constant width as time
progresses). This indicates that the network recovered its target
activity level in part by activating cells with intact input that were
silent right after deafferentation. Yet, for more severe deafferen-
tation, we found a strongly nonlinear time course of fraction of
silent cells. In particular, the fraction of silent cells (average firing
rate below 1 Hz) sharply increased after deafferentation but then
decreased to values lower than before deafferentation (horizontal
slice in Fig. 7A; time courses in B). Thus, most of the silent cells,
including the deafferented ones, became active during recovery
of target activity level. Accordingly, frequency histograms after
synaptic scaling exhibited a decrease in fraction of silent cells and
a sharpening of the distribution in case of severe deafferentation
(vertical slice in Fig. 7A; distributions in C).

The average firing rate of the network as a function of time
(Fig. 8A) permitted a similar classification into more linear and
more nonlinear time courses (shown in gray and black, respec-
tively). Specifically, for deafferentation degrees up to 60% (curves
in gray), the network firing rate recovered with approximately
even rate with only modest fluctuations in slope. In case of more
severe deafferentation (D � 70% and higher), however, an ini-
tially relative flat time course was followed by an epoch of high
slope recovery (curves in black). In other words, we found linear
firing-rate time course for weak to moderate deafferentation and
nonlinear firing-rate time course for strong deafferentation. The
deafferentation degrees for which this strong nonlinearity oc-
curred corresponded to the values of deafferentation for which
we found pronounced network oscillations after synaptic scaling
(Fig. 3). These two distinct recovery modes were not a simple
consequence of how the PY–PY coupling was scaled by the dy-
namics of the homeostatic plasticity rule. Time courses of the
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recurrent AMPA conductance on PYs were well fitted with sig-
moids for all degrees of deafferentation (Fig. 8B) independent
from whether the firing rate time course was linear or not. There-
fore, the scaling rule itself was not the direct source of the non-
linear recovery behavior for severe deafferentation. Rather, the
time course of the fraction of silent cells (Fig. 8C, summary plot
from data in Fig. 7B, for D � 10 to 100%) exhibited strong sim-

ilarity to the time courses of the average network firing rate (Fig.
8A). A scatter plot of average network firing rates and fraction of
silent cells indeed exhibited tight correlation (Fig. 8D). Thus, the
two different network behaviors for mild/moderate and severe
deafferentation, respectively, are driven by the differential re-
cruitment of additional cells that resulted in decreased fraction of
silent cells (i.e., sparseness) after severe deafferentation.
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We then determined how this finding
related to the observed bursting for strong
deafferentation (Fig. 2) by computing the
relative fraction of interspike intervals
smaller than 50 ms (burst index) as a func-
tion of time after deafferentation for D �
10 to 100%. Similar in time course to the
fraction of silent cells, burst index strongly
increased for D � 60% (Fig. 8E). A com-
parison of steady-state values of fraction of
silent cells and burst index after recovery of
target firing rate as a function of deafferen-
tation shows that, as the fraction of silent
cells falls below the value before deafferen-
tation, cells in the network fire bursts of
action potentials (Fig. 8F). We therefore
found a transition point that determines
whether the network recovered with lim-
ited pathological consequences (no burst-
ing, sparseness maintained, no pro-
nounced oscillation with synchrony) or
not. In our case, this transition occurred
between D � 60 and 70%.

Effect of homeostatic plasticity on
information transfer
We expected pathological reorganization
by homeostatic plasticity after severe deaf-
ferentation to have a negative impact on the
network ability to respond to afferent in-
put. We quantified and compared the im-
pact of afferent and recurrent excitatory in-
put on spiking in PYs by calculating the
spike-triggered average afferent and recur-
rent excitatory conductance. This measure
allows for a direct quantitative comparison
of the role of afferent and recurrent excita-
tion in driving spiking of postsynaptic cells.
For example, if recurrent excitation is suf-
ficiently weak such that the afferent input
alone determines when a postsynaptic cell
spikes, we would expect, on average, a flat, low-amplitude spike-
triggered conductance for recurrent excitation and a pronounced
transient increase in spike-triggered afferent conductance. In
other words, a comparison of the peak values of the spike-
triggered conductances serves as a measure for the relative im-
portance of afferent and recurrent excitation in determining the
network dynamics. Here, afferent excitation was dominant be-
fore deafferentation (Fig. 9A, left; total excitatory conductance in
black, afferent excitatory conductance in red, recurrent excita-
tory conductance in blue) and after synaptic scaling in response
to deafferentation for moderate degrees of deafferentation (Fig.
9A, middle, D � 40%). Recurrent excitation, however, domi-
nated after synaptic scaling in case of more severe deafferentation
(Fig. 9A, right, D � 80%). Integrated spike-triggered total exci-
tatory conductances for different degrees of deafferentation were
fairly constant (Fig. 9B, black line) The more deafferented the
network was, however, the stronger the integrated recurrent ex-
citatory conductance was (Fig. 9B, blue line). A comparison of
the peak values further emphasized the critical degree of deaffer-
entation between 60 and 70% (Fig. 9C). At this point, the peak
recurrent excitation exceeded the peak afferent excitation. Thus,
pathological network reorganization was mediated by a shift be-

tween afferent and recurrent excitation that resulted in poor in-
formation transmission in case of severe deafferentation because
the influence of the afferent input on spiking was very limited
(low-amplitude spike-triggered conductance). This shift, there-
fore, may explain deficiency of normal cortical function as a re-
sult of brain disorders associated with cell loss.

Discussion
Homeostatic plasticity describes the regulation of synapses and
intrinsic properties to counteract changes in activity levels and to
maintain overall stability of synaptic strength (Turrigiano et al.,
1998; Turrigiano and Nelson, 2004; Turrigiano, 2007). Here, we
studied homeostatic plasticity as a putative mechanism for corti-
cal network reorganization that occurs during CNS disorders
associated with neural dysfunction. We assumed (1) that the loss
of inputs that occurs in cortical disorders with structural damage
is random, (2) that a homeostatic rule scales the recurrent exci-
tatory synapses on PYs to match the average firing rate of the
network before disease onset, and (3) that disease severity can be
modeled by varying fractions of deafferented cells. On the basis of
these assumptions, we simulated cortical network models subject
to different deafferentation degrees and found a critical threshold
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for pathological network reorganization. For deafferentation
more severe than this critical value, we observed periodic
network-wide discharges with bursts of action potentials in indi-
vidual cells after homeostatic scaling of recurrent excitatory syn-
apses. Our findings therefore represent an unexpected and seem-
ingly paradoxical effect of homeostatic plasticity. In fact, the
target frequency of the whole network was indeed recovered in
our model, but the spike timing was substantially altered such
that there were periods of high activity interleaved with epochs of
relative quiescence in case of severe deafferentation (periodic
EEG complexes). As a result of this pathological network reorga-
nization, representation of afferent input in the spiking of the
network was severely diminished because the network dynamics
were dominated by recurrent excitation (Fig. 9).

Computational network models of homeostatic plasticity
have almost uniquely focused on the role of synaptic scaling in
regulating and stabilizing overall synaptic excitability in presence
of Hebbian learning (Rabinowitch and Segev, 2006a,b; Lazar et
al., 2007; Toyoizumi et al., 2007; Triesch, 2007). Computational
models of tinnitus suggested involvement of homeostatic plastic-
ity (Dominguez et al., 2006; Schaette and Kempter, 2006), but
there has been little work that examines the role of homeostatic
plasticity in more realistic, conductance-based models of cortical
networks. In a previous computational modeling study (Houwel-

ing et al., 2004), cortical deafferentation was simulated to exam-
ine homeostatic plasticity as a potential cause of posttraumatic
epilepsy. A recent study with cultured hippocampal slices pro-
vided additional support for this hypothesis (Trasande and
Ramirez, 2007). In contrast to this previous modeling work, we
have now studied the time course of network reorganization after
partial deafferentation to understand the specific roles of intact
and deafferented cells as a function of time after disease onset.
Because we here studied disorders of the cortex that incapacitate
a presumably random fraction of neurons, the partial deafferen-
tation scheme is different from the one used previously to inves-
tigate posttraumatic epilepsy (Houweling et al., 2004) in which all
cells in the network were subject to the same degree of reduction
in input.

A priori, the heterogeneity of input levels introduced by par-
tial deafferentation permits two orthogonal strategies of recover-
ing target network activity levels. In the first scenario, intact cells
carry the burden of recovering target activity levels by increasing
their firing rate above their initial activity level before partial
deafferentation. In the second scenario, deafferented cells recover
their firing rate. In our simulations, we found the two scenarios to
occur in a well defined temporal sequence. In case of mild to
moderate deafferentation, we only observed concurrent upregu-
lation of firing rates of both intact cells and more depolarized
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deafferented cells. Only in case of severe deafferentation, less ex-
citable deafferented cells also became active. Thus, network reor-
ganization in response to partial deafferentation is not a linear
process. Rather, we found a nonlinear regimen that essentially
mediated a threshold for pathological reorganization in case of
more severe deafferentation.

The goal of our work is to provide hypotheses to experimen-
talists and clinicians about the underlying mechanism of aberrant
brain activity in response to CNS disorders. As for any computer
simulation, the conclusions drawn are inherently limited by the
accurateness and sophistication of our model. We purposefully
did not attempt to closely match any specific experimental data-
set to keep the model as general as possible. In particular, we tried
to limit model complexity by focusing on aspects of real biolog-
ical circuits that we deemed relevant for the hypotheses we aimed
to investigate. As a result, we neglected several important features
of real biological networks. In particular, our model is restricted
to a single class of inhibitory interneurons (fast-spiking response
pattern in response to simulated direct current injection) and
therefore omits slower spiking inhibitory interneurons that tar-
get the dendritic domain of pyramidal cells (Soltesz, 2006). We
consider this simplification of the diversity of interneurons justi-
fied by the fact that we determined synaptic inhibition to only
play a secondary role in the pathological reorganization behavior
shown here (Fig. 4). We chose to use fast-spiking interneurons

because of their distinctive role in modulating pyramidal cell
spiking by their somatic axonal arborization and presumed role
in controlling pyramidal cell activity level (Freund, 2003).

In summary, we used a modified version of a standard cortical
network model that consisted of locally connected, conductance-
based pyramidal cells and inhibitory interneurons. Nevertheless,
two novel aspects of our model deserve closer scrutiny. First,
novelty in our model was the choice of homeostatic scaling rule.
Most likely, homeostatic plasticity describes a range of different
phenomena at different spatial scales and with different expres-
sion loci (Turrigiano, 2007). Activity levels could be sensed and
regulated at the synapse, cell, or network level. We modeled ho-
meostatic plasticity at the network level (e.g., mediated by a dif-
fusible factor as in the study by Stellwagen and Malenka, 2006) by
designing a simple rule that prescribed incremental scaling of
synaptic conductances proportional to their size and to the mis-
match between target and current average frequency. Explor-
atory simulations indicated that more local homeostatic rules are
likely to result in different patterns of network reorganization
after partial deafferentation. In vitro studies of neural cultures
exposed to activity blockage showed concurrent upregulation of
AMPA synapses and downregulation of GABAA synapses (Turri-
giano et al., 1998; Kilman et al., 2002; Mody, 2005). Little is
known, however, about homeostatic scaling of inhibition in vivo
(Mody, 2005) (but see Echegoyen et al., 2007). Also, we did not
find the pathological network reorganization to be qualitatively
affected by homeostatic downregulation of synaptic inhibition in
our model (Fig. 4). Second, novel design choice was the random
pattern of partial deafferentation as a model of the effect of cor-
tical disease on neural firing. This choice is based on the phenom-
enological approximation that a broad class of CNS disorders
cause diffuse random cell loss and thus partial deafferentation of
postsynaptic circuits.

Thus, although our model certainly represents a simplifica-
tion of the underlying processes, it is sufficiently refined and
accurate to provide new hypotheses and insights about the patho-
physiology of slow periodic discharges in a broad range of CNS
disorders affecting cortex. In addition, the mechanisms described
here may be applicable to other neurological conditions with
primarily subcortical localization. More specific models are re-
quired to test whether our findings translate to disorders as
chronic pain mediated by deafferentation hypersensitivity (Zim-
mermann, 2001; Flor et al., 2006; Navarro et al., 2007) and low-
frequency oscillations in the subthalamic nucleus– globus palli-
dus network in patients suffering from Parkinson’s disease
(Bevan et al., 2002).

There is little in vivo data available on the dynamics of cortical
circuits in CNS disease at the cellular and synaptic level. The
findings from our modeling work therefore represent predictions
that require comprehensive experimental testing. However, there
exists ample literature on EEG patterns in patients with CNS
disorders (for review, see Niedermeyer, 2005) that we used to
qualitatively assess our model simulation results. Our model pre-
dicts the following EEG characteristics: (1) slow periodic dis-
charges in severely deafferented networks (Figs. 1, 2), (2) decrease
in frequency of periodic discharges during disease progression
(Fig. 3), and (3) delayed onset of network reorganization com-
pared with disease progression (Fig. 8). The clinical EEG litera-
ture confirms all three predictions. Periodic discharges at low
frequencies are a hallmark of many types of CNS disorders asso-
ciated with transient and permanent cell loss (Niedermeyer,
2005). Delayed onset and recovery of EEG during recovery from
CNS disease has been observed for example in case of herpes
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simplex infections (Upton and Gumpert, 1970; Illis and Taylor,
1972). In additional, albeit indirect, support of our hypothesis,
frontal white matter volume and amplitude of resting delta EEG
oscillations (1.5– 4 Hz) show negative correlation in patients with
mild cognitive impairment and Alzheimer’s disease (Fernandez
et al., 2003; Babiloni et al., 2006).

Little progress has been made in the debate about the nature of
periodic discharge types and mechanisms (Chong and Hirsch,
2005; Hirsch et al., 2005; Jirsch and Hirsch, 2007). The variety of
structural damages has hindered the development of a unifying
theory about the pathophysiology (Yemisci et al., 2003; Gurer et
al., 2004; Kalamangalam et al., 2007). We found that homeostatic
plasticity is a very likely candidate mechanism underlying patho-
logical reorganization of cortical network dynamics in CNS dis-
ease. Hopefully, our findings on reorganization dynamics and
critical value of disease progression for occurrence of pathologi-
cal macroscopic oscillations may serve as a starting point for the
development of early intervention approaches to prevent second-
ary cortical dysfunction caused by homeostatic plasticity.
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Fröhlich et al. • Homeostatic Plasticity Causes Pathological Network Reorganization J. Neurosci., February 13, 2008 • 28(7):1709 –1720 • 1719



physiology of periodic lateralized epileptiform discharges: observations
and hypotheses. Epilepsia 48:1396 –1405.

Kilman V, van Rossum MC, Turrigiano GG (2002) Activity deprivation re-
duces miniature IPSC amplitude by decreasing the number of postsynap-
tic GABAA receptors clustered at neocortical synapses. J Neurosci
22:1328 –1337.

Kuroiwa Y, Celesia GG (1980) Clinical significance of periodic EEG pat-
terns. Arch Neurol 37:15–20.

Lazar A, Pipa G, Triesch J (2007) Fading memory and time series prediction
in recurrent networks with different forms of plasticity. Neural Netw
20:312–322.

Mainen ZF, Sejnowski TJ (1996) Influence of dendritic structure on firing
pattern in model neocortical neurons. Nature 382:363–366.

Masters CL, Richardson Jr EP (1978) Subacute spongiform encephalopathy
(Creutzfeldt-Jakob disease). The nature and progression of spongiform
change. Brain 101:333–344.

Mody I (2005) Aspects of the homeostatic plasticity of GABAA receptor-
mediated inhibition. J Physiol (Lond) 562:37– 46.

Mrsic-Flogel TD, Hofer SB, Ohki K, Reid RC, Bonhoeffer T, Hubener M
(2007) Homeostatic regulation of eye-specific responses in visual cortex
during ocular dominance plasticity. Neuron 54:961–972.

Navarro X, Vivo M, Valero-Cabre A (2007) Neural plasticity after periph-
eral nerve injury and regeneration. Prog Neurobiol 82:163–201.

Niedermeyer E (2005) Abnormal EEG patters: epileptic and paroxysmal. In:
Electroencephalography: basic principles, clinical applications, and re-
lated fields (Niedermeyer E, Lopes da Silva F, eds), pp 255–280. Philadel-
phia: Lippincott Williams and Wilkins.

Nita DA, Cisse Y, Timofeev I, Steriade M (2006) Increased propensity to
seizures after chronic cortical deafferentation in vivo. J Neurophysiol
95:902–913.

Nita DA, Cisse Y, Timofeev I, Steriade M (2007) Waking-sleep modulation
of paroxysmal activities induced by partial cortical deafferentation. Cereb
Cortex 17:272–283.

Rabinowitch I, Segev I (2006a) The endurance and selectivity of spatial pat-
terns of long-term potentiation/depression in dendrites under homeo-
static synaptic plasticity. J Neurosci 26:13474 –13484.

Rabinowitch I, Segev I (2006b) The interplay between homeostatic synaptic
plasticity and functional dendritic compartments. J Neurophysiol
96:276 –283.

Rich MM, Wenner P (2007) Sensing and expressing homeostatic synaptic
plasticity. Trends Neurosci 30:119 –125.

Schaette R, Kempter R (2006) Development of tinnitus-related neuronal
hyperactivity through homeostatic plasticity after hearing loss: a compu-
tational model. Eur J Neurosci 23:3124 –3138.

Soltesz I (2006) Diversity in the neuronal machine: order and variability in
interneuronal microcircuits. Oxford: Oxford UP.

Stellwagen D, Malenka RC (2006) Synaptic scaling mediated by glial TNF-
alpha. Nature 440:1054 –1059.

Topolnik L, Steriade M, Timofeev I (2003a) Partial cortical deafferentation
promotes development of paroxysmal activity. Cereb Cortex 13:883– 893.

Topolnik L, Steriade M, Timofeev I (2003b) Hyperexcitability of intact neu-
rons underlies acute development of trauma-related electrographic sei-
zures in cats in vivo. Eur J Neurosci 18:486 – 496.

Toyoizumi T, Pfister JP, Aihara K, Gerstner W (2007) Optimality model of
unsupervised spike-timing-dependent plasticity: synaptic memory and
weight distribution. Neural Comput 19:639 – 671.

Trasande CA, Ramirez JM (2007) Activity deprivation leads to seizures in
hippocampal slice cultures: is epilepsy the consequence of homeostatic
plasticity? J Clin Neurophysiol 24:154 –164.

Triesch J (2007) Synergies between intrinsic and synaptic plasticity mecha-
nisms. Neural Comput 19:885–909.

Tsodyks MV, Markram H (1997) The neural code between neocortical py-
ramidal neurons depends on neurotransmitter release probability. Proc
Natl Acad Sci USA 94:719 –723.

Turrigiano G (2007) Homeostatic signaling: the positive side of negative
feedback. Curr Opin Neurobiol 17:318 –324.

Turrigiano GG, Nelson SB (2004) Homeostatic plasticity in the developing
nervous system. Nat Rev Neurosci 5:97–107.

Turrigiano GG, Leslie KR, Desai NS, Rutherford LC, Nelson SB (1998)
Activity-dependent scaling of quantal amplitude in neocortical neurons.
Nature 391:892– 896.

Upton A, Gumpert J (1970) Electroencephalography in diagnosis of herpes-
simplex encephalitis. Lancet 1:650 – 652.

Wieser HG, Schindler K, Zumsteg D (2006) EEG in Creutzfeldt-Jakob dis-
ease. Clin Neurophysiol 117:935–951.

Yemisci M, Gurer G, Saygi S, Ciger A (2003) Generalised periodic epilepti-
form discharges: clinical features, neuroradiological evaluation and prog-
nosis in 37 adult patients. Seizure 12:465– 472.

Zimmermann M (2001) Pathobiology of neuropathic pain. Eur J Pharma-
col 429:23–37.
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