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The structure of the phase space of stationary and quasistation-
ary (moving at a constant velocity) solutions of the 1D complex
Ginzburg—Landau equation is investigated by the methods of qual-
itative theory of ordinary differential equations. The existence of a
countable set of double-loop heteroclinic trajectories is proved. The
complex shock—hole—shock structures moving at a constant velocity
along the coordinate correspond to these double-loop trajectories.
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1. Introduction

We consider the complex Ginzburg-—Landau
equation

ds=s—(1+if)|s]Ps+ (1 +ia)ds. (1)

Equation (1) has a family of hole solutions in
the form [1]

su(z — oty t) = [Ah(a: — vot) + nvo]
~ Xexp [z’@h(:c — vot) + ipvy (2 — vot) — z'Qt] ,

(2)
where ‘
Ax(€) = Atanh (k€) , dO/d¢ = ktanh (k) .

A, k, and v are constant coefficients, 7 is a com-
plex one, and p=1/2(a— ). The frequency {2
meets the dispersion relation
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2(Q,v0) = w(Q) — vQ, (3)
w(Q)=p+(a-HQ"

As €=z —vt—+oo, the solution (2) tends
asymptotically to solutions in the form of plane
waves

sai(6:1)=1/1— Q? exp (=it +iQi), i=1,2,

| (4)
with asymptotic wavenumbers @, (as { » — )
and @, (as £ —+ o). Using dispersion rela-
tion (3), one readily finds that

w(Q1) — v0@1 = w(Q2) — vQs. ' (5)

Condition (5) is, actually, the condition of
conservation (in a moving reference frame)
of the constant phase difference between the
asymptotic (as £ — £ 0o) limits of solution (2).
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2. Periodic solutions

Let us, substitute the variables s(z,t)=a(z,t) e~ into Eq. (1) and pass to the reference frame

. moving at the constant velocity vy,

dia=v8a+ (1+iQ)a~ (1+if)]af’a + (1 + i) da. (6)

Stationary solutions of the evolution prob-
lem (6) satisfy a set of ordinary differential equa-
tions in R*

da

="

db 1482 1406 @
@ +‘i +‘i 2 Vo

d¢ 1+z‘aa+1+z'a|ala 1+z'ab'

Set (7) has two single-parametric families of so-
lutions periodic in =

al(é') = Aale‘-QlE'H(Pla bl(E) = ZQ lAaleinE+i‘Px,
(8)

bz(f) = iQ2Aa2'e"Q2€+icpz,
| (9)

where A, = \/i 1- Q? , and the singular point is
bo = O . (10)

a2(£) = An2 e‘.qu+ilp2a )

(l():O,

3. Phase space structure in the case
of vo=0

Statement. In the case of vy =0, the set
of Egs. (7) is conservative and reversible (in the
sense that © and —z are interchangeable, that is
& => —x). There ezist two involutions

a=—a, - (11)

b= b, (12)

that map the phase fluz of Egs.(7) into itself
with the change T => —z. Besides, system (7) is
invariant to the transform

a= ae'¥, b= be'°, (, = const. (13)
Validity of the statement is readily verified by

direct calculations. It is also easy to check that
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each of the above involutions maps the fami-
lies of solutions (8) and (9) into each other. It
follows immediately from this statement, that
the phase flux is symmetrical with respect to
the planes a =0 or b =0, with the substitution
T = —z, and it is also invariant to a simultane-
ous turn by an angle ¢, in the planes a=0 and
b=0.

Let us rewrite (7) for vo =0 in a slightly differ-
ent form. Assuming that a(z)=u(z)e'?(®) and
using: relation w= 0+ (a ~ 0)Q@?, we find

o =,
'=u(yp?- Q%) + B(u? - Aﬁ)u, (14)
uh’ = — v+ C'(uz’-— AZ) u,

where Y =dp/dz, B=(1+ af)/(1+ a?),
C=(f—a)/(1+ a?). Set (14) has the dimen-
sion smaller than that of (7), but the latter
contains a singularity at the plane u=0. The
involutions

'9/) = ""r/’ ’
'l,b = "'1/),
of system (14) correspond to involutions (11)

and (12) of set (7).
The fixed points

U= —u, z= -z, (15)

v —v, z=>-z, (16)

= A,,
u=A,,

=@, (17)
'§b = ”'Q 3 (18)

of set (14) correspond to periodic solutions (8)
and (9) of system (7) at ¢; =, =0. Note that
the two other points

u=—Ag,
u=-—A,,

=@, (19)
v=-@Q, (20)

T RTRTR,
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correspond to same periodic solutions (8) and
(9), but at ¢; =, =w. Thus, when passing
from (7) to (14), the system degenerates due to
only two singular points (17), (19) or (18), (20)
corresponding to each family of periodic solu-
tions (8) or (9).

The types of singular points (17) and (18)
were investigated in [2]. These points are sad-
dles, but one of them has a 1D unstable S¥ and
a 2D stable S manifolds, while the other one
vice versa. The type of the singular point on 2D
manifolds is determined by parameters of the
system. The spectrum of each smgular point is
purely real if

D= Bf-[ 7(2) +6]B2+12B1——8 >0, (21)

and it is complex if D<0, where B;=B (4,/Q)

and C;=C(4,/Q)°. Due to the symmetry
of the phase flux of Eqs (14) with respect
to u=1%=0 and v=9=0 (at z= —z), sin-
gular points (19) and (20) have a spectrum of
eigenvalues coinciding with that of points (17)
and (18).

The intersection of the 2D stable” S; and
2D unstable S¥ manifolds of singular
points (17), (18) “and (19), (20) is structurally
stable in R® This means that the hetero-
clinic trajectory I',(T,) connecting equilibrium
states (17) and (18) ((19) and (20)) is struc-
turally stable in a general class of dynamical
systems and, as was shown in [2], the shock
solution »

a,(z) = A,(z) exp [z'l?,(a:) + z'go,] (22)
of basic equation (1) corresponds to this
trajectory.

Consider now solution (2) of Eq. (1). Inves-
tigation of the hole solution (2), as = — & oo,
verifies that, in the phase space of system (14),
it corresponds to the heteroclinic trajectory
I',(Ts) connecting singular points (17) and (20)
((19) and (18)). One of the trajectories, belong-
ing simultaneously to the 2D stable and 2D un-
stable manifolds of points (17)-(20), cannot be
such a trajectory, because the hole solution is
monotonic both as £ — 400 and z — —oc0 for
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any values of the parameters. Thus, the only
possibility is the intersection of 1D sta,ble S7 and
unstable S} manifolds of equilibrium states 17)
and (20) ((19) and (18)). In a general case, how-
ever, such an intersection is structurally unsta-
ble, moreover, it has codimension 2 in R3.

Let us turn again to system (7). It is clear
from the above considerations for the stability
points (17)-(20), that one of periodic solutions,
(8) or (9), has a 2D stable, W, and a 3D unsta-
ble, W, manifolds, while the other solution vice
versa. A shock solution in the phase space of
system (7) corresponds to a structurally stable
intersection of 3D stable and unstable manifolds
of periodic solutions (8) and (9). The intersec-
tion of 2D manifolds W} and W¥ in R is, on
the contrary, structurally unstable.

We recall that the phase flux of Eq. (7) is
symmetrical (with £=>—z) to the involution
plane a=0. Each of the 2D manifolds of peri-
odic motions (8) and (9) generally intersects the
plane a=0 at the same point by virtue of this
symmetry. On the other hand, the intersection
of manifolds W and W3 at one point means
that they intersect along the trajectory that con-
nects periodic solutions (8) and (9). The sit-
uation described is structurally stable in the
class of systems havmg only involutions (11)
and (12). The invariance of phase flux to the
rotation by an angle ¢, in planes a=0,b=0, in
turn, gives a whole family of heterocﬁnic trajec-
tories instead of a single heteroclinic trajectory.
This means that the intersection of plane a=0
with manifolds W} and W occurs not at one
point but around a closed curve. Such a case,
however, is no longer structurally stable in R?
and has the codimension one in-the class of sys-
tems having two involutions (11) and (12) and
invariant to transform (13).

It was assumed above that the parameters ¢,
B, and @ of system (7) (or (14)) change inde-
pendently of each other. In this case, the inter-
section of manifolds W; and Wy (S and S¥)
in the phase space of system (7) ((14)) is actu-
ally structurally unstable and is broken with a
small perturbation of the parameters. However,
the situation changes if we assume that only two
parameters a and § are independent and choose




the value of ) depending on @ and 8. It is clear
that the dynamical systems possessing such a
property form a film of codimension one.

Proposition 1: For any values of the pa-
rameters a and 3, giving real solution Q(a,f)
to the equation

Q4(1—B—§C2)+Q2<B+§—C’2> -—-3—02 =0,
(23)

there exists a heteroclinic itrajectory T,
(Tn) moving from point (17) ((19)) to point (20)
((18)) and lying in the plane P={u,v,v:
Y= (Q/Aa)u} (P = {u: v, = (Q/Aa)u})

Proof: Let us consider the plane P that con-
tains points (17) and (20). If the 1D manifoids
S; and SY of these points belong completely to
the plane P and intersect the axis u=1=0,
they intersect each other and there exists a
heteroclinic trajectory connecting points (17)
and (20). This supposition follows immediately
from the symmetry of phase flux (see (15)). The
trajectories belonging completely to the plane
P have no singularity in the plane u=0, as
lim,_,o(%/u) = const for any curve. lying in the
plane P and intersecting the axis u=1=0.

Obviously, the phase trajectory belongs com-
pletely to the plane P only if the derivative of
phase flux with respect to the normal to plane P
equals zero at all points of this trajectory. The
latter condition determines the curve

CA

C = {u,v,a,b: v= —éb—‘(u2~Aﬁ), P = ;%u}
(24)
Therefore, the phase flux of system (14) is
tangent to the plane P at the points lying on
the curve C. Now it is necessary to verify that
the curve C is really the solution of system (14)
(phase trajectory). Direct substitution of (24)
into (14) shows that the curve C is the solu-
tion of (14) for all values of @ complying with
Eq. (23). The determinant of (23) is strictly
positive and it is easy to check that the set of
values o and f3, giving the real solution of (23),

is not empty. The proposition is proved.

Consequence: Any phase trajectory of
system (14) moving from the halfspace u>0
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(2<0) to the halfspace <0 (u>0) intersects
the azis u=1=0.

Note that the analytical expression of hetero-
clinic trajectory I'; (24) was derived in the proof
of the proposition. The hole solution of basic
equation (1) correspond to this trajectory.

4. Multiloop trajectories

We now consider the existence of multiloop
heteroclinic trajectories, that is the trajectories
corresponding to the solutions containing sev-
eral hole and shock structures.

Definition: The heteroclinic trajectories,
belonging simultaneously to manifolds Wi and
W3 of periodic solutions (8) and (9) and pass-
ing (n— 1) times near the heteroclinic trajectory
Ty corresponding to the intersection of mani-
Jolds W} and W, are called n-loop trajectories.

According to this definition, a solution, con-
taining n shocks and (n — 1) holes lying between
the shocks, corresponds to the n-loop trajectory.

Proposition 2: Let a heteroclinic contour
ezist in the phase space of system (7), that is,
two types of heteroclinic trajectories coezist to
connect periodic solutions (8) and (9). Then,
a countable set of double-loop trajectories ezists
there..

Proof: Apparently, a double-loop trajec-
tory in the phase space of system (7) corre-
sponds to an analogous trajectory in the space
of system (14) and vice versa. It is easier
to investigate these trajectories in R3, there-
fore we consider the latter space. We sup-
pose that fixed points (17)-(20) are saddle foci
and (17) has 2D stable and 1D unstable mani-
folds. Then, the shock solution corresponds to
a structurally stable heteroclinic trajectory T,,
along which the unstable S§ and stable §§ man-
ifolds of points (17), (18) intersect. By virtue
of the phase space symmetry with respect to
u=1 =0, an analogous intersection (trajectory
T,) occurs for the manifolds 5 and S of singu-
lar points (19), (20). :

The simplest - double-loop heteroclinic tra-
jectory T,, originates at singular point (20),
moves along the unstable manifold S, near the
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trajectory T',, enters the vicinity of point (19),
then passes along the curve Iy to the vicinity
of point (18), and, finally, moving along T, it
ends at point (17) Clearly, one more double-
loop trajectory T',;, also exists, that is symmat-
rical to T,5, and connects points (18) and (19).

Let us designate as Tj a global map of the
secant in the neighborhood of heteroclinic tra-
jectory T'y, and, as T§, a local map in the neigh-
borhood of saddle focus.

We consider singular point (19). System (14)
may be linearized in the vicinity of saddle focus
and, offer a certain transform of coordinates, it
can be converted into

| 'b': _75,
(25)

P=w, w>0,

where (Z,9,p) are the variables in the lo-

cal cylindrical reference frame in the neigh-
borhood of point (19).  Consider the set
E={(z,5:7): 7€(0, 2], P=0,, P=Po}, lying
in the vicinity of saddle focus (19). We take the
secant Z = {Z: =7} and find the set ToR on it.

From the first equation in system (25) we
have Z=7%, =%e*, 7€ (0,%], and then

w, % 1/
=g +tyhm=,  p=p ( ) :
z 21
(26)
Apparently, Egs.(26) describe a spiral connect-
ing the points §=1,, p=p;, and p=0.
Let us take the cylindrical surface K=
{z,%,p: z€(0,7.], P€[0,27), p=p,} in the

~ vicinity of smgular point (19). The intersection

of 2D manifold 5, of singular point t (20) with
the surface K occurs along the curve C originat-
ing from the point Z=0, p=p,, P=7, on the
trajectory T, directed a.long K towards larger
values of Z *. The curve C € K is topologically
eqmvalent to the section R € K. Consequently,
its image on the secant Z is also a spiral moving
to the point p= 0. Thus, the spiral G originating
from the point ¥={(Z, %, p): Z=%;, p=0} is the
1mage of element D (D NT, # 0) of the manifold
S, on the secant Z = {z: Z=7%,} in the vicinity
of point (19).

! We analyze the half-space 0.
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Repeating the same procedure, we can show
that the spiral G originating from the point
v={(z,9,p): z=2z, p=0} is the image of el-
ement D (DNT, #0) of the manifold 2 of sin-
gular point (17) on the secant Z = {z: z=2},
where (z, ¢, p) are the local coordinates in the
neighborhood of saddle focus (18).

The global map T} transfcrms the point 7
to v, and the spiral G to G w1th the cen-
ter at the point 7. One readily verifies that

the spirals G and —@(1) rotate in opposite direc-
tions due to the phase space symmetry. There-
fore, they have a countable number of inter-
sections. Each intersection corresponds to a
double-loop heteroclinic trajectory connecting
points (20) and (17). Thus, the proposition is
proved.

Note that the centers of spirals G and ™ do
not coincide in the absence of heteroclinic tra-
jectory I'y. However, if the manifolds S and S}
of singular points (19), (18) are sufficiently close
to each other, the spirals intersect, although the
number of intersections in now finite rather than
countable.

It is clear that more complicated n-loop
(n > 2) heteroclinic trajectories also may exist.
But the proof of this statement is much more
complicated than that presented above. There-
fore, numerical investigation of the phase space
of system (14) is of great interest. A heteroclinic
trajectory corresponding to one of the shock
structures was found numerically in [2].

5. Phase space structure in the case

of vo#0

For vy #0, the set of equations (7) is not re-
versible, like in the case of vo = 0. But the phase
flux is yet invariant to transform (13).

Let us suppose, as before, that a(z)=
u(z)e*(®) and transform system (7) into

v =v,
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o v = u(':,/;2 - Qf) + B(u2 - Aﬁl)u + avyD (Q1 - ¢)u —voDv,
u = — 2 + C(u2 - A:‘:l).u + 1D (Q1 - ¢)u + avgDv,

(27)
where 1 =dp/dz, D =(1+0?)"!, and Ay =+/1— Q}. System (27) has the fixed points
f
u=4,, P =Q, (28) of singular points (28) and (31) ((29) and (30))
corresponds to the hole solutions moving at
u=-—4y, P=0, (29) constant velocity vy in the phase space of sys-
u=A,, v=0Q,, (30) tem (27). Like in the case of vo =0, the hetero-
clinic trajectory corresponding to this intersec-
u=—A;, ¢=@q, (81) tion is structurally unstable in the general class
of dynamical systems. However, the problem
and the straight line v=u=0. Note that the disappears if we assume that one of the param-
asymptotic wavenumbers ¢; and ¢, are re- eters of system (27), that is @,, depends on the
lated as @2 + @1 =vo/(a — ). Consequently, as other ones.
vp — 0, equilibrium states (28)—(31) transform Thus, analysis of the phase space of sys-
to (17)-(20). System (27) is degenerate rela- tem:(27) indicates that, besides fixed (immov-
tive to (7). The condition of invariance (13) re- able) structures, moving hole and shock struc-
duces for system (27) to the condition of phase tures must exist there. Moreover, Proposition 2
flux invariance to the transforms u=>~u and on multiloop trajectories is completely valid for
v=>— 0. the case of vy # 0. Indeed, its proof is based on
The stability of singular points (28) (31) can the existence of structurally stable heteroclinic
be found directly from analysis of the linearized - trajectories connecting the smgular points and
system (27). However, due to a continuous de- on the local analysis of phase flux in the neigh-
pendence of the roots of algebraic equation on borhood of the saddle focus. Complex shock-
its coeflicients, we state that the character and hole-shock structures moving at the constant
stability of singular points (28)—(31) and (17)- velocity vp correspond to such trajectories as so-
(20) coincide at sufficiently small v,. If, at lutions to the original evolution problem.
vo=0, a structurally stable heteroclinic tra- M.B. and M.I are thankful to the Rus-

jectory exists to connect points (17) and (18), sian Foundation for Basic Research (Project
(19) and (20), then, at small enough v, a  (Code 94-02-03263a). M.B., K.G., and M. wish
structurally stable heteroclinic trajectory ex- also to thank the International Science Founda-
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