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Dynamic and stochastic effects of the interaction of individual localized structures and lattices
of structures of a nonlinear field are considered within one-dimensional large-box Ginzburg—
Landau and Swift—-Hohenberg models. The criterion of soliton “survival” in competition with
counterpropagating modes is derived analytically for a quasigradient case. The criterion of lin-
ear stability of a spatially homogeneous regime, that is similar to the Benjamin—Feir condition,
is obtained for coupled Ginzburg-Landau equations. The relation between the correlation di-
mensions of the space series of counterpropagating modes and the dimension of the time series is
investigated. It is shown that within a quasigradient model of two weakly coupled counterprop-
agating modes, the field can be represented as a superposition of two fixed stochastic spatial
lattices which correspond to these modes and move through one another at constant velocity.
The dimension of the time series at a given point in space is close to the sum of dimensions
of the spatial distributions of counterpropagating modes. With the increase of coupling, the
interaction of coupled modes “loosens” the equilibrium state corresponding to fixed lattices and

~ the dimension of the time series grows.

1. Introduction

The purpose of this paper is the analysis of the
interaction of localized structures of a nonlinear field
within one-dimensional Ginzburg-Landau and
Swift—-Hohenberg models.

The first two models considered in the paper
refer to the class of nearly gradient systems and are
described by the following equations:

Byur + vOpuy = —uy + Brugfu|® — uyu|*
—(K2; + 02)%uy — erusfug|?,

(1)

Byug — VOpup = —ug + Baug|ug|? — uplua|*
— (k3 + 02)2ug — equalus|?

(2)

for the generalized Ginzburg-Landau model, and

Oyuy +vOpuy = —ug + ,Blu% — u?
2 212 2
—(kgy + 95)*u1 — 1wy uy,

(3)

2 .3
Byug — vOzug = —ug + Pauj — Uy

— (k2 + 82)2ug — e2ugu?
(4)

for the Swift—Hohenberg model. Here f; is .the
parameter determining the instability threshold,
1/ko; is the characteristic spatial scale of the sys-
tem, and v is the group velocity. The fields u;(z, t)
and ug(z,t) correspond to..waves travelling to the
right and to the left, respectively (v > 0).
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_ The third model refers to the class of nearly
Hamiltonian systems and is described by equations
of the form

Opuy + v0pu; = ug + (1 + ial)agul
—(1 -+ 7:,31)U1|U1!2
—(l1 + ’I:dl)’ulll’u,zlz , (5)

Opug — vOzug = ug + (1 + iaz)aguz
——(1 -+ iﬂz)UQl?J,zlz
—(lz + idz)UQlullz . (6)

It is assumed that |a;l,|G;] > 1. The parameter
v, like before, has a sense of group velocity for the
waves travelling in opposite directions.

Equations of the form (1)—(6) have been broadly
discussed in the literature. For example, a system of
two coupled complex Ginzburg-Landau equations
with a flow component +v9, of the field were con-
sidered by Dangelmahr & Knobloch [1990] who de-
rived asymptotically equations for slowly varying
complex amplitudes of the field and then used them
for the investigation of the confined travelling waves
and the blinking states observed in experiment.
Solutions of this type within coupled Ginzburg-
Landau equations were also considered by Cross
[1988]. Coupled Ginzburg-Landau equations were

employed in the description of the oscillatory

instability of Rayleigh-Bénard convective rolls
[Croquette & Williams, 1989; Janiaud et al., 1992]
and in the description of the evolution of gasless
combustion fronts [Matkowsky & Vlopert, 1992].
Numerical investigation of the competition of
localized structures within coupled generalized
Ginzburg-Landau equations (with different higher-
order derivatives taken into account) was performed
by Brand & Deissler [1989, 1991].

This paper is concerned, primarily, with
dynamic and stochastic effects emerging as a
result of the interaction of individual localized
structures or lattices of structures described by
models (1)-(6). The mechanisms responsible for the
interaction of individual localized structures within
quasigradient models (1)-(4) at different modes:
travelling to the right [Eq. (1) or Eq. (3)] and trav-
elling to the left [Egs. (2)-(4)] are investigated in
Sec. 2. The interaction of counterpropagating waves
gives rise to the competition of localized structures
at these modes: solitons of one mode suppress the
structures moving in the opposite direction. This

effect governs the dynamics of two counterpropa-
gating lattices of structures, which is analysed in
Sec. 3. Analogous dynamics of the interaction of
localized structures is considered in Sec. 4 for the
quasiconservative model (5)—(6). Finally, of partic-
ular interest is the investigation of dimension and
entropy of spatial distributions for the field formed
by counterpropagating chaotic lattices of localized
structures, of the relation between spatial and tem-
poral dimensions for such fields, as well as of the
changes in these quantities that are stipulated by
the interaction of the structures. These problems
are studied in Sec. 5.

2. Localized Structures
We represent Egs. (1)—(4) in the form

o)

*
ou;

Opu; +v0u; = — - 5i“i|’”_’il2 3 (7)

where Fi(l) is a free energy functional and can be
written as

1 1
FO = [{uilt = 5Bdusl® + glusl
+|(k8; + 02)ui|*}dz (8)
for model (1)-(2) and

sF?

bu;

Gtuz- + ’Uag;’ll:i = - - Ezuzu_? ’ (9)

where

2 1, 1 1
Y =/{§u§~ gﬂiug—FZU?

[0+ Bz (10)
for model (3)—(4).

From Egs. (7), (9) it is apparent that, in the
absence of coupling (¢; = 0), each traveling wave
is described by a gradient model. Indeed, passing
over to the moving coordinate &; = z & vt we have

ot~ bu}
for the first case, and
ot -7 du; (12)

for the second case.




Only statical attractors may exist in the phase
space of such gradient systems because the func-
tionals 1715(1’2) decrease along the trajectories of the
system (dFl(l’z) /dt = — [|0u;/8t]?dé; < 0). Field
distributions that are homogeneous in space
correspond to the simplest attractors. Each of the
equations (11) and (12) have three spatially
homogeneous solutions: two stable solutions with
the amplitudes

1 1
u=0, |umil® =38+ \/ A G k&) (13)

for Eq. (11), and

1 1
u=0, um = ‘2“,Bi + \/:1',31'2 -(1+k5) (14)

for Eq. (12), and one unstable solution with the
amplitude

uaf? = 55— /26— (LK) (19)

for model (11), and with the amplitude

1 1
ui= 2B [3B (R (9)
for model (12). Besides, periodic, quasiperiodic,
and stochastic distributions may correspond to
these attractors. Indeed, all static solutions of
Egs. (11), (12) that are established as ¢ — oo meet
the translational dynamical systems
§FM /6ut =0 17
and

§F® [6u; =0, (18)

respectively. In the phase space of these systems
there exist, besides equilibrium states, periodic and
quasiperiodic trajectories, and a homoclinic struc-
ture (see, for example, Pikovsky & Rabinovich
[1984]). The latter indicates that chaotic spatial
distributions of the field may emerge in the evo-
lution problems (11)-(12) (see Rabinovich et al,
[1992], Gorshkov et al., [to be published]). Taking
into account +v8; (i.e., passing over to the moving
coordinate system) we find that the “fixed” spatial
distribution which is established as a result of the
decrease of the free energy functional will drift to-
wards the right or towards the left depending on
the sign of the group velocity.
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The behavior of models (1)—(2) and (3)-(4) at
small couplings (g; < 1) is primarily the same as
at ; = 0. In this case, however, the free energy
functional that is descreasing in the course of pat-
tern formation will not remain constant in time
as soon as the process has been completed.
Instead, it will fluctuate (periodically or stochasti-
cally) depending on the type of attractor. The spa-
tial structures moving in opposite directions cease
to be “frozen” and their interaction leads to non-
stationary oscillations of the field in time. A new
effect — competition of localized structures — must
appear with increase of coupling.

The interaction of counterpropagating modes
may be analysed by investigating elementary spa-
tial distributions, i.e., localized structures of the
field. In the phase space of the translationl dynami-
cal system (17),(18), a closed homoclinic trajectory
emerging from the coordinate origin and envelop-
ing the equilibrium states with the amplitude |tmi]
[see (13), (14)] corresponds to a stationary localized
solution of Egs. (11),(12) [Pikovsky & Rabinovich,
1984].

‘We can readily obtain the condition necessary
for the existence of localized solutions for Eq. (12).
By differentiating Eq. (18) with respect to z, mul-
tiplying by ug, and integrating from —oo to 400
we obtain, after some transformations, the follow-
ing expression,

-+o00
~ [ k(1 2B 4 30)
-0

+((K; + O2)uiz) Ydz = 0. (19)

Apparently, the left-hand side of (19) is nonpositive
for B; < v/3; consequently, u; = 0. Thus, the local-
ized states that vanish to zero at infinity exist only
for 8 > /3.

By virtue of the hard regime of excitation within
Eqs.(11),(12) the necessary condition for the forma-
tion of a localized structure is that the amplitude
of initial perturbation should exceed the threshold
value determined by the amplitude of unstable spa-
tial homogeneous solution |u;| [see (15),(16)]. The
width and amplitude of the structure formed do not
depend on initial conditions but are determined by
the parameters of the system.

Our first task is to analyse (numerically and an-
alytically) the interaction of two solitary localized
states of the fields u; and ug within the Ginzburg-
Landau model (1)—-(2) (the same considerations are
valid for model (3)—(4)). The analysis gives an an-
alytical estimate for the time of soliton interaction
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that depends on their width and group velocity and
at which, when exceeded, the solitons may vanish.

We will describe each soliton as follows [Aran-
son et al., 1990]:

Umi, |T — Toi| < o,
Ui €xP(—ps|T — zoi|)
cos(v;|z — zoil),

|z — zoi| > To:,

ui(z) = (20)

where |upm;| is the amplitude of the ith soliton (i =
1,2), zg; is the coordinate of its center, ro;

is soliton’s halfwidth, p; = |Rey/i — k|, and v; =
)

Knowing the structure of the phase space of the
translational dynamical system (17) we may take
as an amplitude |uy,;| of the localized structure the
amplitude of the stable nontrivial spatially homo-
geneous solution’ (13).

Making use of (20) we can easily evaluate the
stability region, Bi;(koi) < Bi < Bai(koi), of local-
ized solution on the parameter plane. To this end
we minimize the free energy functional Fi(l) for so-
lutions of the form (20). The final expression is too
tedious to be presented here. Typical dependences
Fi(l) (rg;) are given in Fig. 1 for different values of
the parameters G; and ko;.

Apparently, the localized structure (20) is sta-

ble only if the function Fi(l)(roi) has a minimum at
some rg; = rg; # 0 (Fig. 1a). When §; < By;, the
function Fi(l) (r0;) has only one minimum for ro; = 0
and grows monotonically as ro; increases (Fig. 1b).
Consequently, the system profits energetically if it
changes to the state with u; = 0 when the local-
ized structure (20) collapses. On the contrary, when

Bi > P, the function F( )(rm) decreases monoton-
ically.as 7o; — oo (Fig. lc) In this case, a stable
nontrivial homogeneous state (13) is more profitable
energetically.

An expression for the upper boundary of sta-
bility region may be written in an explicit form. It
should be borne in ‘mind that the contribution of
exponentially small soliton “tails”may be neglected
for sufficiently large ro;. Then the expression for

Fi(l)(mi) takes on a form

n fact, we consider a localized structure as a combination
of two differences between stable spatially homogeneous so-
lutions with the amplitudes u = 0 and |u| = |umil.

F( )('rg,) = 2rz|umz|2{(1 + K z)
1 1
—§ﬂz’|umz'|2 + glumM"’}
4 1

For 1/40;|umi|> > (1+k§;), the increase in ro; leads
to a decrease of Fz-(l) (ro:) and, consequently, the sys- -
tem goes to a nonlocalized state. Using (13) we
obtain an expression for (a; [Aranson et al., 1990]:

B = (4/VI 1+ K. (21)

The region of stability of the localized solution (20)
for model (12) may be estimated in a similar fash-
ion. In particular, the upper boundary of the region
is estimated as

Bai = (2/V3)y/1 + ;.

The problem of interaction of localized states
on counterpropagating modes will be solved em-
ploying the method of successive approximations.
Assuming that solitons do not interact in the zero
approximation, we can write for system (1)—(2) an
expression in the first-order approximation:

(22)

5F-(1)
6tui + v@mui = — 5’!::
—esui|ug(z £ vt))?,
i=1,2,

(28)

where u;(£) in the last term is given by expres-""

sion (20). This term is responsible for the influence
of counterpropagating wave on the given localized
structure. Clearly, with the field of the counter-
propagating mode being localized, the localization
region contributes mgmﬁcantly to mteractlon

Below we will assume that there is‘a rather
strong difference between the parameters of equa-
tions for the counterpropagating modes (3; < f;).
Then A; € A; and it can be assumed that the soli-
ton of the ith mode is entirely in the localization
region of the soliton of the jth mode throughout
interaction. Neglecting the effect of the “tails” of
solution u;(x) that is exponentially small as com-
pared with the contribution of the center of the soli-
ton and restricting ourselves to a consideration of
the time interval during which the solitons interact,
we can rewrite (23) in the form
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Fig. 1. ‘Dependence of the free energy functional (5) on soliton radius ro: for koi = 0.5: (a) fo: = 2.35, the _localizéd structure
is stable; (b) fo: = 2.0, the localized structure collapses and a trivial spatially-homogeneous regime is established (u; = 0);
(c) Boi = 2.7, the localized structure spreads and'a spatially homogeneous regime with a zero field is éstablished.

sFW Equation (24) contains an additional term
Oyu; £ v0u; = —— =, (24)  —equs|um;]? [cf. Eq. (11)]. Clearly; stable local-
Ui ized solutions of Eq. (24) will exist at €; # 0, given
where that additional damping due to this term is compen-
70 / {|U12 (1 +eilu .|2 sated by the increase of nonlinear increment, which,
L ? wemg in turn, shifts the boundary of the stability region
1 1 of localized solutions towards larger 3.
——:?-ﬁi}uilz + §|ui|4) For example, for ko; = 0 in the absense of

coupling between the counterpropagating modes
+|(kE; + 8%)u;*}dz . (e; = 0), the boundary of stability region of the




158 M. V. Bazhenov & M. I. Rabinovich

solutions to (20) that is found from the conditions of
the existence of a nontrivial minimum of free energy

functional E(” is determined by 8 > f1; ~ 2.07.
While in the presence of coupling (¢; = 0.1) and
with |umi|? ~ 1.75 (the amplitude of the soliton of
the counterpropagating mode for 8; = 2.35, ko; =
0.5), the stability condition takes on the form 3; >
B1; ~ 2.2

Thus, while at €; = 0 the parameters of the
equation belong to the region of stable localized
solutions, they may move to the instability region
when g; # 0 and the amplitude of the localized
structure will begin to decrease.

Regarding the localized structure (20) as a do-
main of an excited state of the field and neglecting
boundary effects (the effect of oscillating “tails”),
the velocity with which the amplitude of localized
state changes may be estimated from the equation

du;
— =+ ks + €ilumg|*)us
B — walusl*,
i 7, (25)
with the boundary conditions |u;(0)| = |ums|.

Now the problem of soliton “survival” reduces
to whether the soliton amplitude attains during in-
teraction the critical value |uc|, i.e., the amplitude
of the unstable spatially homogeneous solution of
Eq. (11) [see (15)].

Rewriting Eq. (25) for squared absolute value
of the field amplitude and performing integration
we find a critical value for the time of soliton inter-
action:

. 1 [ees ]
cry 5 lumiIZ
« dlui|?
—(1+E§; +eiltmg |2) [us 24 Bilua| — |us]® 7

(26)

and an expression for the critical velocity of relative
motion of the solitons:

Veri = AAj/tcri . (27)

‘We would like to remind our readers that in the
derivation of formulas (26) and (27) we assume that
the condition §; « B; is met, which allows for the
two following approximations. First, we neglect in-
teraction of the solitons when they move one against
another and overlap only partially. Given A; < Aj,

these time intervals are short as compared with the
time during which one of the solitons is located en-
tirely in the localization region of the other. Second,
it is assumed that the jth soliton’s amplitude that
enters the right-hand side of the equation for the
ith soliton is constant during interaction. Actually
this is not the case because the amplitudes of both
solitons decrease. Therefore the theoretical value
of v¢r; found from (26) and (27) must be overesti-
mated at close values of the parameters (3; =~ ;).
Alternatively, for a rather great difference in the pa-
rameters (§; < f;), the amplitude of the ith soliton
will decrease in the course of interaction faster than
that of the jth soliton and the error in (26), (27)
due to constant amplitude of the jth soliton will be
small. It should also be emphasized that for values
of B; close to the lower boundary of stability region
(for a narrow soliton), the inaccuracy of approxi-
mating a rectangular shape of the soliton increases
and the oscillating tails of the solution to (20) must
be taken into account to make a more adequate
description.

Figure 2 shows the critical value of group ve-
locity vero plotted versus the parameter (o at con-
stant §; = 2.35 that was obtained in computer
calculations? (solid curve) and a similar dependence

iz
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Fig. 2. Critical velocity vc, as a function of the parameter f2
for ko1 = ko2 = 0.5, f; = 2.35. The solid curve is calculated
numerically and the broken line is found analytically.

?The boundary value problems (1)-(2) and (3)-(4) were
solved on a computer employing a combination of a pseudo-
spectral method [Orszag, 1971] and a method of operator
exponent [Aranson et al.,1991)].
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(b)

Fig. 3. Time evolution of two solitons of the form (1)-(2)
" for koy = koz = 0.5, f1 = 2.35: (a)f2 = 2.35, both solitons
reconstruct their shape on completion of interaction; (b) B2 =
2.3, one of the solitons disappears as a result of interaction.

found from expressions (26)—(27) (broken curve).
One can see that the difference between numeri-
cal and theoretical values of vg9 grows with the in-
crease of the parameter O2 and attains its maximum
when (1 = (.

Time evolution of solitons within model
(1)—(2) is depicted in Fig. 3 for different ratios of
the parameters $; and (. In the first case (81 =
B2 = 2.35) the shape of the solitons after they have
passed through one another is reconstructed com-
pletely. While for 8; = 2.35, (2 = 2.30, the second
soliton vanishes.

3. Interaction of Lattices

We have already mentioned that the localized
structures considered above may form a lattice of
structures. This distribution is steady state in the
absence of coupling (e; = 0) and corresponds to
one of the minima of free energy functional. The
solitons forming the lattice may be arranged
either regularly or randomly, depending on the
initial conditions.

In the presence of coupling (g; # 0), the
soliton lattices moving towards one another
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interact. If the distance between solitons in the
lattice is much greater than the typical length of
the soliton, the type of interaction is determined
only by the interaction of individual solitons, as was
described above, because the soliton is fully recon-
structed in its motion between collisions.

Soliton interaction acquires new features if the
distance between solitons in the lattice is of the or-
der of their characteristic size. Then, the soliton
may fail to reconstruct its amplitude during motion
between collisions. Apparently, the soliton ampli-
tude will drop below its threshold amplitude after
several collisions and the soliton will vanish even if
the group velocity of the lattice is greater than the
critical velocity found theoretically for individual
solitons.

A situation that is, in a sense, inverse to the one
described above is also possible. If the parameters
B1, Pz of Egs. (1)—(2) or Egs. (3)—(4) exceed the
upper boundary of stability region [see (21), (22)],
then the lattices will be unstable in the absence of
interaction and, in some time, a nontrivial spatially
homogeneous state of the field will be established in
each system. The moving lattices may “stabilize”
one another in the presence of coupling (g; # 0).
Soliton spreading in time intervals when they do not
interact with counterpropagating solitons is com-
pensated by the decrease of their amplitude during
interaction and, as a whole, the solitons retain their
shape.

The snapshots of two interacting lattices of
model (1)-(2) are shown in Fig. 4 at different
moments of time. One can see that depending on
the parameter ratio in the equations one of the fol-
lowing situations may be realized:

e both lattices fully retain their structure in the
process of interaction and reconstruct their
shape on its completion (Fig. 4a);

e one of the lattices disappears but each soliton
retains its shape in the course of several colli-
sions (Fig. 4b);

e each soliton of the second lattice vanishes
after the first collision with the counterpropa-
gating lattice (Fig. 4c);

. o finally, both the lattices disappear as a result
of the interaction (Fig. 4d).

4. Quasiconservative Model

Now consider the interaction of localized structures
of a nonlinear field within two coupled Ginzburg-
Landau equations with complex coefficients (5)—(6).
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Fig. 4. Time evolution of two periodic soliton lattices of the form (1)—~(2) for ko1 = koz = 0.5: (a) 1 = Bz = 2.35, both
lattices reconstruct their shape on completion of interaction; (b) /1 = 2.35, f2 = 2.288, one of the lattices disappears after
‘several collisions with counterpropagating mode solitons; (c) f1 = 2.35, B2 = 2.25, one of the lattices disappears after the first
collision with counterpropagating mode solitons; (d) B1 = f2 = 2.25, both lattices disappear as a result of interaction.

First of all we will investigate in the linear = where
approximation the stability of spatially homoge- 1-1
k3

neous solutions of system (5)—(6) in the form A? = -1——:l~l'—, w; = BiAZ + d; A2,

u; = A; exp(—iwit) (28)  The perturbéd solution may be written as




ui(z,t) = (A; + si(z, 1)) exp(—iw;t) . (29)

Substituting (29) into (5)—(6) and retaining only
linear terms we find (v = 0)

6 .
% = (1 +iw;)s; — (L +146:)(2s: + 57)
L 0%s;
+(1 + Za)ﬁgg'
— (U +ids) (s + 85) AiAj + .47,
i=1,2. (30)

We take interest in the stability of the equilibrium
solution s; = 0 of system (30) with respect to per-
turbations of the form

s; ~ exp(iknz), kn=2mn/L, (31)

where L is the resonator length.

For the sake of simplicity, we assume that
Ili =1 =1 and di = d2 = d. We can readily
show that, in this case, the Lyapunov exponents of
perturbations (31) meet the equation '

M 42X3(2K2 + h) +22[(2K2 + h)? +p1 + po — 12H7]
+A[(2K2 + h)(p1 + pa) — 2k212A? — 1dR* (o
+ap)k2] + [p1p2 — kLI2HE — 1dR2K2E (1 + o)
—h2d* (a1 + a)ki] =0, (32)

where p; = hk2(1 + ;i) + ka(1 + o), h =
2/(1+1).

For a resonator of infinite length (L — o0), the

stability condition may be written as follows:

(1+a181)(1+azf2)> 1% +1ld(oq +ag) +d2a 02,
(1+a1B1)+(1+azfz) > 2% —ld(a1+02) ,

I<1. (33)

When the conditions (33) are met, the real parts of
all roots of Eq. (32) are negative and, consequently,
the solutions (28) are linearly stable. It is readily
seen that, in the absence of coupling (I = d = 0), the
conditions (33) give the known Benjamin—Feir con-
dition 1+ of > 0 [Benjamin & Feir, 1966; Newell,
1974; Stuart & DiPrima, 1978].
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We take in Eqs. (5)—(6) I = d = 0 and replace
the variables & = z + vi. Then, we obtain one
Ginzburg-Landau equation

Oy = u; + (1 + z'a,-)agiu,-

—-(1 + zﬁz)uz|uz|2 . (34)
Equation (34) has an exact localized solution of the
form

u; = uip(sinh As&;) % exp(—iQit) (35)

where

ki =—pi+ (of +2)"2,

pi = —=3(1 + i) /2(e — Bi)
lugs|> = N (k7 — 2 + Bkici;)

A =1/(K2 — 14 1k504),

Q= M (cu(f — 1) — 1rs).

This solution was first found by Pereira and Stenflo
[1977] and later by Nozaki and Bekki [1984] in the
form presented above.

The interaction of localized structures at one
mode [solutions (35) within one equation (34)] was
investigated by Kishiba et al. [1991] in a nearly
conservative case (|ay|, |B;] > 1). It was shown
that the localized solutions (35) may either repel or
attract one another, depending on the ratio of initial
phases. In the latter case the solitons pass through
one another thus reconstructing their shape after
the interaction.

In this paper we analyse the interaction of soli-
tons of the form (35) at different modes, i.e., the
ones described by two coupled Ginzburg-Landau
equations (5)—(6). The parameters of the equa-
tions correspond to the quasiconservative case (|os/,
|Bi| > 1). We would like to note that, because we
choose the parameters in the region where spatially
homogeneous regime is unstable [see (33)], we can
obtain a solitary solution of the form (34) only in
a finite, although rather broad, time interval AT.
As soon as this time elapses, a family of chaotically
interacting solitons of the form (35) is formed in the

~ system.

In our computer experiment, initially motion-
less solitons (v = 0) were arranged at a certain
fixed distance from one another and their evolution
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Fig. 5. Time evolution of the centers of solitons of the form (5)-(6) for a1 = oz = 100, 1 = f2 = —100: (a) h =l = 0,
dy = dp = 1, the solitons move apart; (b) I1 =l = 0, d; = dz = —1, the solitons move towards one another, oscillating relative
to the common center; (c) Iy = I = —1, d; = dz = 0, the solitons monotonically move towards one another.

was studied in the time interval AT. We found that  coupling — real or imaginary® prevails. In the case
the character of soliton interaction depends signif-  of imaginary coupling, the solitons behave like
icantly on the signs of the coefficients [;,d;. Two ‘
solitons repel if 1;,d; > 0 (':Fig. 58‘) and, ijce versa, 3Because of amplitude coupling of the equations in sys-
they attract one another if l;,d; < 0 (Fig. 5b,C).  tem (5)~(6) the type of interaction of localized solutions does
The behavior of the solutions also depends on which  not depend on their phase ratio.




particles in the potential of a given profile. The
trajectories of two attracting solitons are shown in
Fig. 5b for I; = 0, d; = —1. The solitons recurrently
pass through one another oscillating near their com-
mon center. In the case of real coupling (d; = 0),
solitons do not oscillate and the distance between
their centers decreases monotonically (Fig. 5¢c). The
latter is explained by the fact that we are concerned
with a nearly conservative system and the equations
contain, primarily, imaginary coeflicients.

5. Dimension of the Coupled
Chaotic Lattices

The spatial field distributions that are established
in the absence of coupling between the equations of
models (1)—(2), (3)-(4), and (5)-(6) may be con-
sidered, at a certain moment of time ¢, as a result
of the evolution of a finite-dimensional translational
dynamical system G;. Then we can introduce the
correlation dimension of space series, ds, and the
Kolmogorov-Sinai entropy, ks, which was first done
by Afraimovich et al. [in press]. On the other hand,
the spatial distribution that is moving at a certain
group velocity at a given (fixed) point will gener-
ate a time series with correlation dimension d; and
entropy h:. There arises a question: What is the re-
lation between the spatial dimensions, ds; and dsg,
and the dimension of the time series, dy, for coupled
subsystems?

We will investigate this problem starting from
an analysis of the quasigradient models (1)-(2) and
(3)—(4). Because the field distributions that are
established, in the absence of coupling, at each coun-
terpropagating mode are “frozen” for Egs. (1)—(2)
and (3)—(4), the time series for each mode will ex-
actly repeat the space series and they will have
equal characteristics (dimensions and entropies).

In the presence of coupling (g; # 0), each equa-
tion of system (1)—(2) or (3)—(4) may be considered,
to the first approximation, as an equation with a
variable parameter. Here it is a squared amplitude
of the external (with respect to the given equation)
field. The time dependence of this parameter is a
sequence of pulses for which the repetition rate is
determined by the second equation. Since the state
of the system without coupling (g; = 0) corresponds
to one of the minima, of free energy functional, small
coupling will produce the following effect: When the
external parameter reaches at a given point of the
field its maximal value (the “top” of the soliton),
the nontrivial state of the field of the first equation
at this point is unstable and its amplitude starts to
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decrease. At the next moment of time, the ampli-
tude of the external parameter drops to zero (the
field between the solitons) and the system tends to
the initial state that corresponds to the minimum of
the functional. Thus, the external parameter (i.e.,
the field amplitude of the second equation) modu-
lates the field amplitude of the first equation. The
dimension d; of the time series that is generated
within the first equation at a fixed point can be
represented as a sum of the dimensions of spatial
distribution inherent in this system and of external
signal (spatial distribution of the second equation).

The considerations presented above are mnot
quite exact because they do not take into account
the feedback in the system (e; # 0 in both equa-
tions). However, if the coupling is small it is natural
to assume that the following relation will hold:

di ~ dgy +ds2 (36)

As the coupling increases, the interaction of
counterpropagating modes gradually “loosens” the
equilibrium state corresponding to the fixed lat-
tices. The system becomes significantly nonlinear
far from the maxima of the free energy functional,
its dynamics gets more and more complicated, and
the dimension of the generated time series grows.

Results of computer experiments verify our the-
oretical suppositions. Numerical calculations show
that the dimension of the time series, d;, can be
represented approximately as a sum of spatial char-
acteristics of unperturbed static soliton lattices at
e < 1 and grows substantially as ¢ increases (see
Fig. 6). With a further increase of coupling, the dy-
namics of the system changes qualitatively. Above
the critical value &, individual localized structures
and groups of structures at one of the modes (the
choice of the mode depending on initial conditions)
are suppressed by the counterpropagating mode.
Eventually, a spatially homogeneous regime is es-
tablished at this mode.

Now consider the relation between the dimen-
sion of the time series measured at a fixed
point and the dimension of the space series for
counterpropagating stochastic fields of the quasi-
conservative model (5)—(6). A nonstationary field
distribution is established for each traveling wave
in system (5)—(6), i.e. the field distribution varies
in time even when the subsystems are not coupled
(I; = d; = 0). This indicates that for each wave
the dimension of the time series, dy;, measured at a
fixed point relative to which the wave is traveling
at a speed v, depends on this speed and does not
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Fig. 6. The dimension of the time series, d, as a function
of the coupling between modes, ¢, for model (3)-(4) : ko1 =
koz = 0.5, /1 = [z = 2.18.

coincide with the dimension of the space series, dg;.
Consequently, the dimension of the time series, d; =
ds1 + dyo, differs from the dimension of the space
series, dy = ds1 +ds2, measured at a certain moment
of time t even when two counterpropagating waves
are not coupled in the system. For example, for
oy =-09, 3, =121;=d; =0, and v = £0.2 we
have dg; = dg = 4.4 £ 0.1 while d; = 10.4 £ 0.2.
Thus, unlike quasigradient systems, there is no
apparent connection between spatial and temporal
dimensions in a nongradient case. The relation be-
tween spatial and temporal dimensions within non-
gradient systems is still open for discussion.
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