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Little is known about how cortical networks support the emergence of remarkably different activity patterns. Physiological activity
interspersed with epochs of pathological hyperactivity in the epileptic brain represents a clinically relevant yet poorly understood case of
such rich dynamic repertoire. Using a realistic computational model, we demonstrate that physiological sparse and pathological tonic-
clonic activity may coexist in the same cortical network for identical afferent input level. Transient perturbations in the afferent input
were sufficient to switch the network between these two stable states. The effectiveness of the potassium regulatory apparatus determined
the stability of the physiological state and the threshold for seizure initiation. Our findings contrast with the common notions of (1)
pathological brain activity representing dynamic instabilities and (2) necessary adjustments of experimental conditions to elicit different
network states. Rather, we propose that the rich dynamic repertoire of cortical networks may be based on multistabilities intrinsic to the
network.

Introduction
Cerebral cortex exhibits a broad spectrum of physiological spa-
tiotemporal activity patterns that range from synchronized oscil-
lations during slow-wave sleep to desynchronized firing during
waking (Steriade et al., 1993). These cortical activity states are
thought to be initiated and maintained by different afferent input
patterns and levels of neuromodulators (McCormick et al.,
1993). Accordingly, in computational models, different choices
of intrinsic neuronal and synaptic parameter values reproduce
different activity states (Destexhe, 1999; Bazhenov et al., 2002;
Compte et al., 2003; Hill and Tononi, 2005). In this framework of
“parameter-mediated dynamic repertoire”, the dynamic flexibil-
ity of cortical networks results from the number and complex
action of parameters that can be tuned to achieve different net-
work behaviors (Prinz et al., 2004).

However, the ubiquitous presence of multistabilities in neu-
rons (Hounsgaard and Kiehn, 1989; Fraser and MacVicar, 1996;
Marder and Calabrese, 1996; Hahn and Durand, 2001; Shilnikov
et al., 2005; Fröhlich and Bazhenov, 2006; Kass and Mintz, 2006;
Fernandez et al., 2007) suggests that changes in parameter values
may not be required for generation of different network activity
patterns. In such an alternative framework of “multistability-
mediated dynamic repertoire”, several stable activity states coexist

without any parameter change. Rather, a transient perturbation
is sufficient to induce a long-lasting change in network behavior
by causing a switch from one stable state to another, a form of
hysteresis. Once such a transition has occurred, the network re-
mains in the new activity state at the offset of the perturbation.
Although multistability is a fundamental property of nonlinear
systems (Strogatz, 2000; Shilnikov et al., 2008) little is known how
such dynamics could emerge in the case of cortical circuits.

Epileptic seizures are commonly assumed to be the result of
changes in network properties that eliminate the negative feed-
back mechanisms providing a break on excessive neuronal acti-
vation. Therefore, routinely used parameter modifications that
cause seizure-like activity include removal of synaptic inhibition
and reduction of intrinsic outward currents by pharmacological
means or changes in extracellular ionic milieu (Traub et al., 1993;
Kager et al., 2000; Bikson et al., 2003; Pinto et al., 2005; Ziburkus
et al., 2006; Cressman et al., 2009; Ullah et al., 2009). However,
the fundamental question of how epileptic brains can exhibit
seemingly normal physiological network dynamics most of the
time yet spontaneously switch to epochs of aberrant pathological
activity in absence of such experimental manipulations remains
unanswered.

Using computational network models that include extracellu-
lar potassium concentration dynamics (Bazhenov et al., 2004),
we investigated the transition between physiological and patho-
logical network activity at seizure onset. We tested the hypothesis
that “multistability-mediated dynamic repertoire” can explain
the irregular occurrence of seizures. Specifically, we asked
whether (1) the physiological and pathological network state can
coexist in the same network model without any parameter
change, (2) seizure initiation is mediated by switching from one
to the other state, (3) a sufficiently strong yet transient perturba-
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tion induces seizures, and (4) the stability of the pathological state
depends on the network properties to account for the fact that
not all brains exhibit overt seizures.

Materials and Methods
Neuron models. Both pyramidal cells (PYs) and fast-spiking inhibitory
interneurons (INs) were modeled as two-compartment, conductance-
based neurons. Each neuron had a dendritic and an axosomatic compart-
ment. The coupling conductance of these two compartments determined
the firing pattern of the model neurons in response to superthreshold
depolarizing current injection (regular spiking for pyramidal cells, PYs,
and fast-spiking for inhibitory interneurons, INs). The dendritic and
axosomatic membrane voltages VD and VS are given by:

Cm dVD/dt � �g�VD � VS�/SD � ID, Ionic,

g�VS � VD�/SS � � IS, Ionic,

(1)

where g � 0.1 mS is the coupling conductance between the dendritic and
axosomatic compartments, ID,Ionic and IS,Ionic are the corresponding
ionic currents, and Cm � 0.75 �F/cm 2 is the membrane capacitance. The
surface areas of the two compartments are SD � 1.65 10 �4 cm 2 and SS �
10 �6 cm 2. All ionic currents follow the classical Hodgkin-Huxley form
of Ij � gj(VD,S � Ej) with conductance gj and reversal potential Ej. In
addition to the leak ionic current, the axosomatic compartment was
endowed with a voltage-gated sodium (PY: GNa � 3000 mS/cm 2, IN:
GNa � 2500 mS/cm 2) and a delayed-rectifier potassium (GKv � 200
mS/cm 2), and a leak conductance (GKl � 0.1 mS/cm 2). The dendritic
compartment had high-threshold calcium, calcium-activated potassium,
slowly activating potassium, persistent sodium, hyperpolarization-
activated depolarizing mixed cationic, potassium leak, and mixed cat-
ionic leak conductances (PY: GHVA � 0.016 mS/cm 2, IN: GHVA � 0.01
mS/cm2; PY: GKCa � 3.5 mS/cm2

, IN: GKCa � 0.3 mS/cm2; PY: GKm � 0.01
mS/cm2, IN: GKm � 0.0 mS/cm 2; PY: GNaP � 4.0 mS/cm 2, IN: GNaP �
0.0 mS/cm 2; Gh � 0.05 mS/cm 2; PY: GKl � 0.01 mS/cm 2, IN: GKl �
0.005 mS/cm 2; GL � 0.033 mS/cm 2). Equations and parameters for these
ion channels and intracellular calcium dynamics were previously de-
scribed in detail (Fröhlich and Bazhenov, 2006). Network heterogeneity
was introduced by drawing random values for the potassium leak con-
ductance from a normal distribution (mean 0.01 mS/cm 2, SD 0.001
mS/cm 2 for PYs; mean 0.005 mS/cm 2, SD 0.0005 mS/cm 2 for INs).

Network geometry and synapse models. The network used in this study
consisted of 200 PYs and 40 INs. The network included recurrent exci-
tatory connection between PYs and recurrent feedback inhibition. Syn-
aptic connectivity was random (connection probability p � 0.1) with
doubled value of p within local footprint (radii: PY-PY: 5; PY-IN: 1;
IN-PY: 5). All excitatory connections had a fast AMPA and a slow voltage-
dependent NMDA component (total conductances: gAMPA(PY-PY) � 9.6 nS,
gNMDA(PY-PY) � 0.96 nS, gAMPA(PY-IN) � 3.0 nS, gNMDA(PY-IN) � 0.30 nS).
InhibitionwasmediatedbyfastGABAA synapticconductances( gGABA(IN-PY)�
9.6 nS). A detailed description of the synaptic dynamics has been previ-
ously provided (Fröhlich et al., 2008a). Afferent excitatory input (GPY �
0.9 nS, GIN � 0.9 nS) was modeled with a Poisson process with frequency
f � 140 Hz for both PYs and INs. Perturbations to switch between net-
work states were modeled with a transient increase of the PY afferent
input to f � 150 Hz.

[K�]o regulation apparatus. Each cell was surrounded by an extracel-
lular compartment that modeled the [K �]o dynamics in the interstitial
space (Bazhenov et al., 2004; Fröhlich et al., 2006). [K �]o was deter-
mined by the interaction of the neuronal potassium currents I�K,
Na �/K � ATPase activity

IK Pump � Imax/�1 � ��K�]o(eq)/[K�]o))2; (2)

with [K �]o(eq) � 3.5 mM, Imax � 5 mA/cm 2 in the dendritic compart-
ment, Imax � 40 mA/cm 2 in the somatic compartment. K � clearance by
glial elements was modeled by a K � buffer with first-order kinetics, as
follows:

d�B�/dt � k1��B�max � �B�� � k2[K�]o�B�, (3)

G � k1��B�max � �B��/1.1 � k2 [K�]o �B�, (4)

where k1 � 0.008; k2 � k1/(1�exp(([K �]o � [K �]o(th))/�1.15)).
Half-maximum activation values of the K � buffer were set to soma:

[K �]o(th) � 15 mM (soma) and 9 mM (dendrites). Lateral diffusion be-
tween neighboring compartments was computed by

D � �	x�[K�]o1 � 2[K�]o2 � [K�]o3) (5)

with � � 4 10 �6 cm 2/s and 	x � 100 �m. In sum, the potassium regu-
lation apparatus was governed by the following differential equation:

d[K�]o/dt � �k/Fd��I
K � IK Pump� � G � D (6)

where k � 10 denoted a conversion factor, F � 96,489 C/mol was the
Faraday constant, and d determined the ratio of the volume of the extra-
cellular compartment to the surface area. Equilibrium potentials were
continuously updated under the assumption that diffusion-drift equilib-
rium was reached immediately and that all other ion concentrations
remained constant ([K �]i � 130 mM, [Na �]o � 130 mM, [Na �]i � 20
mM, [Cl �]o � 130 mM, [Cl �]i � 8 mM):

EK � 26.64 mV ln([K�]o/[K�]i),

EK � 26.64 mV ln([K�]o � 0.2[Na�]o)/([K�]i � 0.2[Na�]i),

EL � 26.64 mV ln([K�]o � 0.085[Na�]o � 0.1[C1�]i)/([K�]i

� 0.085[Na�]i � 0.1[C1�]o).
(7)

The main properties of the model dynamics, such as existence and sta-
bility of the “physiological” asynchronous state and existence and stabil-
ity of the epileptic state characterized by transitions between fast runs and
slow bursting, were tested against synaptic and intrinsic parameter
change to ensure structural stability of the model. This included varying
of synaptic coupling, maximal conductances of intrinsic currents and
parameters characterizing efficiency of [K �]o regulatory system.

Results
The local extracellular potassium concentration [K�]o reflects a
spatiotemporal average of local neuronal activity since neuronal
action potential firing predominantly determines [K�]o. Previously,
strongly elevated [K�]o has been implicated in pathological activity
patterns that are characterized by neuronal hyper-activation
since an increase in [K�]o causes a decrease in the driving force of
potassium currents that play a key role in repolarizing neurons.
However, very little attention has been paid to how networks are
resilient to transient increases in [K�]o caused by activity without
triggering pathological hyperactivity. In fact, the question of un-
derstanding the transition dynamics from physiological to patho-
logical network activity has been mostly avoided by choosing
parameters or experimental conditions to reach an (artificial) set
point where seizure-like activity dominates. We here revisit the
role of [K�]o dynamics to investigate whether they may play a
role in mediating a “multistability-mediated dynamic repertoire”
that includes physiological and pathological activity states coex-
isting in the same network.

To address this question, we used a conductance-based com-
putational network model of a cortical circuit that was composed
of pyramidal cells (PYs) and fast-spiking inhibitory interneurons
(INs) for our simulations. The model neurons were endowed
with a rich set of intrinsic conductances to reproduce the exper-
imental observation that cortical neurons can exhibit both tonic
firing and intrinsic bursting depending on [K�]o (Jensen et al.,
1994; Fröhlich and Bazhenov, 2006). Each model neuron was
enclosed by an extracellular compartment that included a model
of the [K�]o regulatory apparatus (buffering by glia, neuronal
reuptake, diffusion). All neurons in the network received random

Fröhlich et al. • Network Multistability and Variety of Brain States J. Neurosci., August 11, 2010 • 30(32):10734 –10743 • 10735



afferent synaptic input. We first tested for
asynchronous, sparse activity and then in-
vestigated the effect of transient increases in
afferent excitatory input without changing
any model parameter to identify whether
(1) such a network can exhibit a
“multistability-mediated dynamic reper-
toire” and (2) under what conditions tran-
sitions between stable states occur.

Physiological activity in a network with
[K �]o dynamics
For the baseline afferent input, the model
network exhibited asynchronous firing
with low average firing rate accompanied
by minor local [K�]o fluctuations initi-
ated by individual action potentials (Fig.
1A, Subthreshold membrane voltage map
for all PYs; Fig. 1B, [K�]o map).
Throughout the simulations, the network
activity remained stable with average fir-
ing frequencies of 1.18 Hz and 9.96 Hz for
PYs and INs, respectively (Fig. 1C, Firing
frequency distribution histograms). The
[K�]o fluctuations in the extracellular
compartment surrounding a given cell
(e.g., PY2, Fig. 1D) were primarily deter-
mined by the action potential firing of the
corresponding cell yet action potentials in
neighboring cells also contributed by K�

diffusion. Thus, the transient increases in
[K�]o during low-frequency activity did not cause an activity-
outlasting increase in [K�]o. With these simulations, we estab-
lished that the model is capable of exhibiting physiological
activity in presence of [K�]o dynamics. We next studied the sta-
bility of this physiological state in response to transient increases
in afferent input.

Prolonged increase in global input triggers
pathological activity
So far, we have established the stability of an asynchronous, low-
frequency firing regime in presence of [K�]o dynamics. We next
investigated whether the network can respond to an increase in
afferent excitatory drive without switching to pathological net-
work dynamics. We tested for such resilience of the network
to excitatory input by applying perturbations of different length
to the rate of excitatory synaptic input. To preclude spatial dy-
namics from buffering such an increase in excitation, all pertur-
bations were uniformly applied to all PYs.

A transient increase (duration T � 10 s) in the afferent input
(“perturbation”) to the PY population resulted in an almost im-
mediate increase in the average PY firing rate (Fig. 2A, horizontal
bar: perturbation duration, histogram). In contrast, [K�]o (av-
eraged across network, red line in Fig. 2A) increased only gradu-
ally by activity-dependent accumulation of K� ions in the
extracellular space over the entire interval of elevated afferent
input. At the offset of the input perturbation, [K�]o recovered
back to its resting value (Fig. 2B, color-coded [K�]o for entire
network as a function of time). Due to the relatively slow recovery
of [K�]o after the offset of the perturbation, the averaged firing-
rate did not instantaneously recover back to base-line but rather
exhibited a similarly slow recovery. Thus, this perturbation of the
PY firing did not elicit seizure-like activity and the network even-

tually returned to the stable physiological activity state. For such
perturbations, [K�]o alterations were delayed relative to changes
in the activity level due to the slow rate of [K�]o accumulation. In
the case of more prolonged perturbations (T � 20 s), however,
sufficiently elevated [K�]o prevented the network from return-
ing to the physiological state at the offset of the input perturba-
tions (Fig. 2C, firing histogram and average [K�]o; Fig. 2D,
color-coded [K�]o). Rather, both [K�]o and activity levels fur-
ther increased until the network converged to another stable yet
dramatically different activity mode that was characterized by
network-wide hyperactivity. In contrast to the previously shown
shorter perturbation, [K�]o was sufficiently elevated at the end of
the longer perturbation such that positive feedback between neu-
ral firing and [K�]o occurred for the same input level that previ-
ously supported stable physiological activity levels (Fig. 1). This
second stable network state qualitatively resembles pathological
activity patterns that are associated with neocortical epileptic sei-
zures (Sypert and Ward, 1974; Jensen and Yaari, 1997). Specifi-
cally, this pathological network state is patterned into alternating
epochs of tonic firing and clonic bursting (Fig. 2E). This seizure-
like state represents a second stable network state as it (1) lasted
for the duration of the simulations (up to 500 s, data not shown)
and (2) was resilient to a range of perturbations in the afferent
excitatory drive. In addition, [K�]o fluctuates during the patho-
logical state yet fails to exhibit unstable “runaway” dynamics.
Therefore, identical cortical networks can exhibit either physio-
logical or pathological activity patterns without any change in any
parameters of the network. Rather, in agreement with our hy-
pothesis of “multistability-mediated dynamic repertoire,” a suf-
ficiently long yet transient global perturbation in the afferent
excitatory drive can mediate a transition between these funda-
mentally different activity regimes.
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Figure 1. Physiological activity in cortical network with [K �]o dynamics. A, Color-coded activity map of 200 PYs (cool and hot
colors indicate hyperpolarization and depolarization, respectively). B, Color-coded [K �]o map corresponding to activity in A. C,
Firing rate histograms for pyramidal cells and inhibitory interneurons. D, Top, Overlaid membrane voltage traces of three neigh-
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Mechanism of transition from physiological to pathological
activity state
The above results suggest that the duration of increased neuronal
activity determined whether a transition into the pathological net-
work state occurred. Since we found [K�]o to increase during the
input perturbation, we tested whether there was a corresponding
elevation of [K �]o above which a transition to the pathological
network state occurred. We systematically varied the duration T
of the globally elevated afferent input to achieve different peak
[K�]o values at the offset of the perturbation (average [K�]o

traces in Fig. 3A). For T � 15 s, the network only exhibited the
physiological activity pattern (traces labeled “no seizure” in Fig.
3A). For input perturbations longer than that, however, in-
creased afferent synaptic input invariably initiated a transition
into pathological, seizure-like discharge patterns (traces labeled
“seizure” in Fig. 3A). A closer consideration of the average in-
creases in [K�]o that were caused by perturbations of different
duration suggests that [K�]o values indeed had to reach a critical
value for the transition into the seizure state to occur (estimated
threshold indicated by dashed line in Fig. 3B). Interestingly, how-
ever, the average [K�]o values at the offset of the elevated input
(Fig. 3B, zoom in of region of interest from Fig. 3A) were initially
very similar for values of T that failed and succeeded in causing a
transition from physiological to pathological activity. Since the
exact determination of a [K�]o threshold was difficult when only
considering the network-wide average, we then determined the
[K�]o values in the extracellular compartments around individ-
ual neurons. In agreement with the average traces (Fig. 3A,B), the
histogram of these values (averaged over 1 s after offset of pertur-
bation) for T � 15 (no seizure) and T � 16 (seizure) strongly

overlapped (Fig. 3C). This may explain
the experimental difficulty in identifying a
threshold value from a single local [K�]o

measurement (Sypert and Ward, 1974)
(see also Fig. 4C below). In fact, our model
predicts that [K�]o measurements in a
single local area in experiments without
seizure initiation could exceed similar
measurements in another experiment
where a seizure was initiated. In sum, our
modeling results support the role of the
previously proposed threshold of [K�]o

for the initiation of pathological network
dynamics (Somjen, 2004; Fröhlich et al.,
2008b) yet we predict that clean experi-
mental establishment with single location
measurements of such a threshold may be
elusive.

To further establish the causal role of
[K�]o in the seizure initiation process, we
ran control simulations where we froze all
[K�]o values in advance of the input per-
turbation. With [K�]o dynamics absent,
activity levels increased and decreased in
close temporal alignment with the change
in afferent input (Fig. 3D). Independent
of the duration of the perturbation, the
network always returned to the physiolog-
ical state. Therefore, the inclusion of
[K�]o dynamics causes the existence of
the second stable network state. Input
perturbations of sufficient length to in-
crease [K�]o above a critical value caused

a transition from the physiological to the pathological network
state. Above this [K�]o threshold value, neural activity and [K�]o

were transiently linked in a positive feedback loop between neural
activity and intrinsic excitability determined by [K�]o. The
pathological networks state itself, however, represent a stable
state that was robust to perturbations and prevented further in-
creases in [K�]o.

Further confirmation for the existence of network bistability
between physiological and pathological activity patterns results
from the existence of perturbations that are capable of switching
the network back to the physiological state. Indeed, when we
significantly reduced the afferent input (Fig. 3E, labeled arrow),
the network switched from tonic firing to bursting mode during
which [K�]o monotonically decreased. At [K�]o � 4.85 mM

(network average), the network returned to physiological ran-
dom firing and [K�]o returned back to baseline with accelerated
pace (PY activity map in Fig. 3E, left panel; sample membrane
voltage and corresponding [K�]o trace in right panels).

Global stability versus local ignition
So far, we have used different durations of global (i.e., network-
wide) perturbations to probe the dynamic repertoire of the net-
work model with [K�]o dynamics. We next investigated how
spatial network dynamics contribute to the transition between
the physiological and pathological stable network states. The
neurons in the model network are coupled through recurrent
excitation, feedback inhibition (mediated by fast-spiking inhibi-
tory interneurons), and diffusion of K� in the extracellular space.
Therefore, perturbations of a subset of neurons can potentially
have a broad range of effects. Specifically, on the one hand, exci-
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tation within the network can spread both
via excitatory synaptic connections and
via K� diffusion. On the other hand, ad-
ditional recruitment of feedback inhibi-
tion and reduction of local peaks in [K�]o

by diffusion can potentially quell in-
creases in local network excitation. To
probe how this complex interplay of en-
hancing and dampening by spatial dy-
namics affects the transition from the
physiological to pathological network
state, we considered (1) the effect of the
“perturbation size” (fractions of neuron
subject o transient increase in afferent ex-
citation) and (2) the role of local, sus-
tained increases in [K�]o.

We found that limiting the spatial ex-
tent of the perturbation (i.e., reducing the
number of PYs subject to a transient in-
crease in afferent excitatory drive) in-
creases the resilience of the physiological
state to such perturbations. A perturba-
tion (T � 20 s) that targeted a contiguous
block of 175 of the 200 PYs caused a tran-
sition to the pathological network state
(Fig. 4A, top, spiking activity). However,
if the same perturbation was reduced to
target only 150 of 200 PYs, no such tran-
sition occurred (Fig. 4A, bottom, spiking
activity). Thus, on the one hand, in ad-
dition to extending the duration of the
perturbation (Fig. 3), increasing the per-
turbation size represents another pathway
toward a switch to pathological network activity. On the other
hand, the smaller the perturbation size, the longer the perturba-
tion can last without causing a switch to pathological activity (Fig.
4B). This explains the stability of the normal physiological net-
work against even long perturbations as long as they do not target
large fractions or even the entirety of the network. Importantly,
when a prolonged yet local perturbation is just sufficient to trig-
ger a switch to the pathological state (Fig. 4C), the values of [K�]o

at the stimulus offset (Fig. 4C, vertical line) vary substantially
across the population of neurons. These results provide further
evidence for why a [K�]o threshold for seizure initiation cannot
be determined from any single site measurements. Blocking K�

diffusion caused a transition to the pathological state (data not
shown) for both perturbation sizes. Therefore, K� diffusion here
acts as a mechanism to stabilize the physiological state in case of
local perturbations. Together these simulations show that tran-
sient, spatially constrained, moderate perturbations in the affer-
ent excitation are unlikely to trigger a transition away from
physiological activity in presence of K� diffusion.

This result suggests that extreme events are required to exceed
level of activity required for K� feedback to take over the network
dynamics in the normal (nonepileptic) brain. Patients suffering
from epilepsy would have a reduced basin of attraction for the
stable physiological state such that random input fluctuations
can more easily cause a transition into the seizure state. Specific
forms of activity, such as relatively synchronized neuronal activ-
ity during sleep, could facilitate transitions to the seizure state
which may explain higher likelihood of seizures during sleep
(Steriade 1974; Gigli et al., 1992). Brains without detectable sei-
zures would have cortical networks with much larger domains of

attraction for the physiological activity state at the expense of very
small (and thus hard to reach and persist in) domains of attrac-
tion for the pathological network state.

However, if the perturbation is of a nature such that it has a very
pronounced, unphysiological effect on individual neurons, it is suf-
ficient for the perturbation to be constrained to a small population of
neurons to eventually cause a network-wide switch to pathological
activity. Specifically, we modeled a local network abnormality by
introducing an extra K� source in the middle of network (extracel-
lular compartment of PY 100). As a result, PY 100 rapidly switched to
a pathological bursting mode (Fig. 5). As a consequence of the excess
K� spreading through the network by diffusion, eventually the en-
tire network switches to the pathological activity state characterized
by alternating epochs of tonic firing and slow bursting with excep-
tion of the few cells close to the network abnormality that continue to
display pathological bursting (Fig. 5). Further support for the key
role of K� diffusion comes from the fact that abolishment of all
synaptic connections between PY 100 and the remainder of the net-
work had no qualitative effect on the network dynamics (data not
shown). These results show that even spatially constrained perturba-
tions can play the role of the epileptic focus by recruiting the entire
network and inducing a transition from physiological to pathologi-
cal activity by means of K� diffusion if these perturbations reflect a
failure of the potassium regulatory mechanisms.

Spontaneous transitions from physiological to
pathological activity
So far, we characterized the types of perturbations that can induce a
transition from the physiological to the pathological activity state. To
determine whether such transitions can occur spontaneously, we ran
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simulations where we randomly modulated the amount of afferent
excitation the entire network receives. The resulting fluctuation in
spiking activity in the network modeled the commonly observed
changes in activity levels as a function of inputs from other cortical
networks and areas. In agreement with the above results, we found
that the network can support a broad range of activity levels within
the stable state of physiological activity (Fig. 6, top two traces). How-
ever, in other cases with more prolonged epochs of globally elevated
activity, transition into the pathological activity state occurred (Fig.
6, bottom two traces). These simulations show that the network can
support both physiological and pathological activity in presence of
randomly fluctuating input. Also, the transition from physiological
to pathological activity occurs as a function of the afferent input and
therefore in a random and spontaneous fashion.

K � clearance defines resilience to network transitions
Together, our modeling results predict that both physiological and
pathological activity patterns represent stable network states. Impor-
tantly, no parameter change was necessary in our model to elicit
either of the two activity patterns. Therefore, neural circuits in brains
of patients suffering from pathologies associated with neural hyper-
activity may exhibit intrinsic multistabilities that form the substrate

for seemingly normal brain activity during
prolonged times that yet is interspersed with
bouts of pathological activity. As a conse-
quence of this hypothesis, our model further
predicts that (subtle) differences in the bio-
physical mechanism that mediates this bist-
ability may explain why certain people
suffer form pathological network activity
whereas others do not. From a dynamic sys-
tem viewpoint, the resilience to perturba-
tions can be considered as the size of the
basin of attraction of the stable physiological
activity state. Specifically, the larger the size
of the basin of attraction, the more severe
transient perturbations the network can
withstand without switching to the patho-
logical network state. We thus hypothesized
that the size of this basin of attraction of the
physiological network state and therefore
the likelihood of triggering a transition from
physiological to pathological activity de-
pends on the “efficiency” of the [K�]o reg-
ulating systems in maintaining baseline
[K�]o in the presence of increase neural ac-
tivity. To test this hypothesis, we altered the
threshold parameter [K�]o(th) in our model
that defines the [K�]o dependence of the
rate by which the glial system clears extracel-
lular potassium ([K�]o threshold level of
binding rate of free extracellular K� to the
glial buffer). Specifically, an increase of this
threshold, [K�]o(th), reduces the binding
rate constant for a given level of [K�]o and
therefore renders the glial potassium clear-
ance apparatus less efficient. A decrease of
[K�]o(th) has the opposite effect. We deter-
mined the minimal duration of elevated in-
put to the network that caused a transition
out of the basin of attraction of the physio-
logical network state (Fig. 7A). This critical
perturbation duration measures the size of

the basin of attraction of the physiological state. For [K�]o(th) less
than�10 mM, no perturbation of any duration induced transition to
the pathological network state. Therefore, this regime may model
cortical networks with strong resilience to pathological hyperac-
tivity. Higher values of [K�]o(th) decreased the critical perturba-
tion duration which saturated at �10 s for [K�]o(th) �15 mM.
Networks with such weakened resilience to excitatory perturba-
tions and therefore smaller basins of attraction for the physiolog-
ical activity state may correspond to networks in brains of
seizure-prone patients. These data show (1) that the efficiency of
the glial potassium clearance apparatus defines the duration of
increased input required to cause a transition out of the stable
physiological network state and (2) that the same perturbation
can trigger an epileptic seizure in a network with a higher value of
[K�]o(th) but only cause a transient increase in activity in a net-
work with a lower value of [K�]o(th) (Fig. 7B, representative
example).

Discussion
Multistability-mediated dynamic repertoire
In agreement with our hypothesis of “multistability-mediated
dynamic repertoire,” we found that a cortical network can exhibit
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two distinct activity patterns without any
change to the model parameters. This net-
work bistability between physiological
and pathological activity was mediated
by the inclusion of the commonly
overlooked yet ubiquitous biophysical
mechanism of extracellular potassium
concentration regulation. Sufficiently
strong yet transient perturbations in the
afferent input triggered a transition from
the stable sparse asynchronous activity to
the stable tonic-clonic seizure state.

The emergence of the network bist-
ability proposes a fundamentally different
viewpoint on how cortex can exhibit dif-
ferent activity states. In contrast to the
“parameter-mediated dynamic repertoire,”
the dynamic richness of our network model
is not mediated by external, modulating fac-
tors but rather is a direct consequence of the
dynamic mechanism endogenous to the
network. This novel framework may elimi-
nate the common limitation of current
conceptual and mathematical models that
invoke a sustained change in parameters
or input levels to explain both the transi-
tions between different activity regimes
and the persistence of such states. It re-
mains to be seen to which other cortical
activity states beyond epileptic seizures
this model of network multistability will
apply. Furthermore, our findings suggest
that the experimental study of transient
perturbations to active neuronal networks
may provide novel insights into network
dynamics.

Network multistability versus
runaway dynamics
We found that a cortical network with K�

dynamics exhibits a stable network activity
state that resembles both electrographic sei-
zures in animal models (Steriade et al.,
1998) and tonic-clonic seizures in humans
(Niedermeyer, 2002). The consideration of
K� dynamics as a factor in epileptic seizures
has a long history without ever having found
broad acceptance as a mechanistic explana-
tion for seizure dynamics (Somjen, 2002,
2004; Park and Durand, 2006; Fröhlich et
al., 2008b). Although our model shows that
the inclusion of K� dynamics is essential for
the occurrence of the stable seizure state, our
results suggest a revision of the original hy-
pothesis on the role of K� in epileptic sei-
zures (Green, 1964; Fertziger and Ranck,
1970). According to this so-called potas-
sium accumulation hypothesis, an elevation in [K�]o depolarizes
neurons and therefore increases their activity level. As a result, fur-
ther accumulation of [K�]o occurs. Based on this positive-feedback
model, it was hypothesized that there is a critical value of [K�]o for
which seizures are triggered, that [K�]o monotonically increases
during seizures, and that seizures terminate when [K�]o is suffi-

ciently elevated to induce depolarization block. In vivo measure-
ments of [K�]o during electrographic seizures, however, failed to
provide evidence in support of this hypothesis (Somjen, 1979).

In contrast, we here show that [K�]o dynamics cause the
emergence of a second stable network state characterized by
seizure-like activity instead of unstable runaway dynamics. Al-
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though seizure initiation (transition from normal to pathological
activity) is dominated by a positive-feedback reaction in our
model, the seizure itself represents a stable network state. The
robustness of a stable state in presence of multistability is mea-
sured by the size of its basin of attraction which defines how
strong perturbations need to be to move the network into a dif-
ferent state (Fig. 8A). Our results propose that duration, size
(spatial extent), and amplitude of a transient excitatory pertur-
bation contribute to the overall effect of the perturbation in the
case of a cortical network with K� dynamics.

Our results suggest that the pertaining dynamics can be con-
ceptualized as a dynamic system with two stable states (Fig. 8B).
The network can either be in the physiological or the patho-
logical activity state. As the overall network excitability be-
comes elevated, the likelihood for the network to be in the

pathological state (red) instead of the phys-
iological state (blue) is increased. Both ac-
tivity states are stable states and thus
represented by local minima to which the
system converges. The broader and
deeper the trough is that corresponds to a
given activity state (i.e., domain of attrac-
tion) is, the more resilient is the state to
perturbations. Therefore, in this concep-
tual model, the relative size of the domain
of attraction of the physiological state de-
fines the resistance to seizure initiation.
On the other hand, the relative size of the
domain of attraction of the seizure state
may define how pronounced and pro-
longed individual seizures are. Different
relative sizes of these two domains of at-
tractions will thus define whether and
how severely a brain will develop epileptic
seizures. Together with the increasing ev-
idence for aberrations in potassium regu-
lation apparatus in human patients with
epilepsy (Hinterkeuser et al., 2000; Schro-
der et al., 2000; Binder and Steinhäuser,
2006) and animal models (Grisar et al.,
1992; Jansen et al., 2005; Ivens et al.,
2007), our simulations support the key
role of [K�]o in cortical seizures and yet
suggest a substantial revision of the con-
ceptual framework of seizure dynamics.

Elevated extracellular K � and other
epileptogenic factors
As for any model of a highly complex dy-
namic system, our model has limitations
and does not incorporate all mechanisms
that potentially contribute to shaping the
seizure dynamics. Deficiencies of the K�

regulatory system that reduce its effective-
ness in controlling [K�]o and facilitate
[K�]o increase may synergistically inter-
act with other epileptogenic factors (e.g.,
structural reorganization after loss of neu-
rons). For example, in the temporal lobe
epilepsy model, the recurrent mossy fiber
pathways associated with loss of hilar in-
terneurons mediate reverberating excita-
tion that can reduce the threshold for

paroxysmal granule cell synchronization. Even a modest eleva-
tion of extracellular K� (by 1.25 mM) more than triples the prob-
ability that mossy fiber stimulation evokes an epileptiform
response (Nadler, 2003). Other mechanisms may shift the bal-
ance between synaptic excitation and inhibition. For example,
accumulation of intracellular Cl� during seizures may shift its
reversal potential and thus reduce the inhibiting effect of inhibi-
tion of GABAA receptor-mediated synaptic currents.

The focus of this paper has been seizure initiation. Although
sufficiently strong random input fluctuations can lead to sponta-
neous seizure termination, we have not directly investigated ter-
mination of epileptiform activity and this mechanism does not
explain the characteristic time-scale of seizure duration or the
post-ictal depression state commonly observed after tonic-clonic
seizures. A variety of factors including synaptic depression, fast
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decrease of the extracellular K� concentration mediated by
Na�/K� exchange, activity-dependent outward currents (e.g.,
K(Na)), progressive depolarization of Cl� reversal potential that
changes balance between excitation and inhibition (Frohlich et
al., 2007a) as well as other factors may contribute to the termina-
tion of a seizure and promote post-ictal depression. These factors
are less likely to be significant near seizure onset.

Multistability in the brain
We have explored cortical models to confirm our hypothesis that
multistable behavior of cortical networks can explain the (spon-
taneous) occurrence of qualitatively different network states.
Transient perturbations of sufficient strength can induce transi-
tions between these different stable states. Bistable dynamics is a
structurally stable property of our model and is likely to be qual-
itatively preserved in a broad class of models. As the main param-
eters in the model were continuously varied the model dynamics
changed smoothly rather than abruptly. Achieving bistability did
not require precise parameter tuning. Indeed, we analyzed the
existence and stability of the “epileptic” state represented by tran-
sitions between fast runs and slow bursting previously (Fröhlich
and Bazhenov, 2006; Frohlich et al., 2006, 2007b). By including
afferent synaptic inputs in the model we showed here that a more
“physiological” state characterized by asynchronous, low-fre-
quency firing was also stable as long as the mechanisms respon-
sible for control of [K�]o (pumps, glial buffering, diffusion, etc)
were sufficiently strong to accommodate the flow of K� to the
extracellular space for the range of physiological activities.

Bistable and multistable network behavior has received atten-
tion as a computational paradigm for specialized cortical circuits
that perform short-term memory-related tasks, as for example,
prefrontal cortical circuitry, that exhibit persistent activity that
outlasts the stimulus to be remembered by the subject (Goldman-
Rakic, 1995; McCormick et al., 2003; Shu et al., 2003). Compu-
tational models of this working memory have focused on the role
of recurrent excitation in mediating this bistability between rela-
tive quiescence (baseline) and sustained elevated firing activity
(Wang, 2001). Our work generalizes this concept of multist-
able network behavior to the case of coexistence of physiolog-
ical and pathological (tonic-clonic) activity as an extreme case
of “multistability-mediated dynamic repertoire.” Based on
our findings, we hypothesize that this framework can be ex-
tended to other pathological network states that are character-
ized by hyperactivity.

In conclusion, our modeling suggests a shift away from pa-
rameter optimization to reproduce different network states to-
ward the study of the role of transient perturbations to induce
transitions between different stable network states (Shu et al.,
2003). Combined with the discovery and further study of bio-
physical mechanisms that mediate multistability (e.g., ion con-
centration dynamics, short-term synaptic plasticity), such an
approach to probe the system with perturbations instead of com-
plex parameter modulation may lead to a more in-depth and
mechanistic understanding how the rich spectrum of cortical
network activity patterns arises.
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