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Sustained neuronal activity can be broadly classified as either tonic firing or bursting. These two major
patterns of neuronal oscillations are state dependent and may coexist. The dynamics and intracellular mecha-
nisms of transitions between tonic firing and bursting in cortical networks remain poorly understood. Here we
describe a detailed two-compartment conductance-based cortical neuron model which exhibits bistability with
hysteresis between tonic firing and bursting for elevated extracellular potassium concentration. The study
explains the ionic and dynamical mechanisms of burst generation and reveals the conditions underlying coex-
istence of two different oscillatory modes as a function of neuronal excitability.
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I. INTRODUCTION

Oscillatory activity is an emerging property of many bio-
logical systems. In the brain, neuronal oscillations modulate
cortical excitability and are critically involved in almost ev-
ery cognitive task including information coding, memory
formation, and perception �1�. Neuronal oscillations result
from the activity of individual neurons that can be broadly
classified as tonic spiking �unimodal distribution of inter-
spike intervals� and bursting �multimodal distribution with
distinct peaks for intraburst intervals�. Many neuron classes
display transitions between tonic spiking and bursting as a
function of the brain state �e.g., sleep versus wakefulness�
�2�; these transitions can modify the transfer mode of a neu-
ronal population. Understanding the dynamical mechanisms
underlying the existence of tonic spiking and bursting oscil-
lations and conditions that trigger transitions between these
patterns of neuronal activity is critical for understanding pro-
cessing of sensory information in the brain.

An increase in intrinsic excitability can cause bursting in
cells which usually fire single action potentials. Extracellular
potassium concentration ��K+�o� has been shown to modulate
intrinsic excitability �3�. It is well established that �K+�o in-
creases during epileptogenesis �4� and may be critically in-
volved in synchronized burst oscillations during several sei-
zure types �5�. Little, however, is known about the
underlying dynamics of these state-dependent transitions be-
tween different oscillatory modes. Here, we show that non-
synaptic, spontaneous activity in hippocampal region CA3 in
vitro switches from single spikes to bursting when �K+�o is
increased. We then build a conductance-based model of a
cortical neuron which we show to exhibit bistability with
hysteresis between tonic firing and bursting for elevated
�K+�o. Using fast-slow analysis, we explain the mechanism
of bursting and reveal the source of bistability in this system
for a range of �K+�o.

II. CONDUCTANCE-BASED MODEL

The conductance-based model used in our study includes
a dendritic and an axo-somatic compartment reflecting the
functional morphology of cortical neurons �6�. Motivation

for the choice of a two-compartmental model is that different
firing patterns �e.g., different levels of spike frequency adap-
tation for regular spiking neuron versus fast spiking interneu-
ron� can be easily modeled by varying the electrical coupling
between the two compartments �6�. Here, we model a pyra-
midal cell with spike frequency adaptation for injection of a
depolarizing step current,

CmdVD/dt = − gL�VD − EL� − gKL,D�VD − EK�

− g�VD − VS�/SD − ID
ionic

g�VS − VD�/SS = − gKL,S�VS − EK� − IS
ionic, �1�

where VD and VS are dendritic and somatic membrane volt-
ages, respectively, g=0.1 mS is the coupling conductance
between the two compartments, ID

ionic and IS
ionic are the ionic

currents in the two compartments, Cm=0.75 �F/cm2 is the
membrane capacitance, and gL=0.03 mS/cm2, gKL,D
=0.01 mS/cm2, gKL,S=0.1 mS/cm2, EL, and EK are the con-
ductances and equilibrium potentials of the mixed and
potassium-mediated dendritic and somatic leak currents, re-
spectively. The surface areas of the dendritic and
somatic compartments are SD=1.65�10−4 cm2 and SS
=10−6 cm2, respectively. All ionic currents are of the form
Ij =gj�VD,S−Ej� with conductance gj and equilibrium poten-
tial Ej. The conductance gj is written as

gj = Gjm
MhH, �2�

with maximal conductance Gj and voltage-dependent activa-
tion and inactivation variables m and h. The activation and
inactivation dynamics are described by first-order kinetics of
the form �ẋ=−�x−x�� where x� �m ,h�. Specifically, the den-
dritic compartment is endowed with voltage-gated transient
and persistent sodium �INa,D and INap,D�, slow voltage-
dependent and calcium-dependent noninactivating potassium
�IKm and IKCa�, high-threshold calcium ICa, and
hyperpolarization-activated depolarizing Ih currents �7�:

ID
ionic = INa,D + INap,D + IKm + IKCa + ICa + Ih. �3�

The axo-somatic compartment exhibits a transient and
persistent sodium current �INa,S and INap,S� and a delayed-
rectifier potassium IKv current �8�:

PHYSICAL REVIEW E 74, 031922 �2006�

1539-3755/2006/74�3�/031922�7� ©2006 The American Physical Society031922-1

http://dx.doi.org/10.1103/PhysRevE.74.031922


IS
ionic = INa,S + INap,S + IKv. �4�

The maximal conductances are GNa,D=1, GNap,D=3.5, GKm
=0.01, GKCa=2.5, GCa=0.015, Gh=0.05, GNa,S=3000,
GNap,S=0-3.5, and GKv=200 �all conductances in mS/cm2,
voltage-dependent conductances scaled with temperature ad-
justment factor �=2.95 �6��. The equilibrium potentials were
ENa=50 mV and ECa=140 mV. The equilibrium potential EK
for potassium conductances is determined by the Nernst
equation. The voltage-independent leak conductance gL, with
equilibrium potential EL given by the Goldman-Hodgkin-
Katz equation, defines the resting potential �9,10�:

EK = 26.64 ln
�K+�o

�K+�i

EL = 26.64 ln
�K+�o + 0.085�Na+�o + 0.1�Cl−�i

�K+�i + 0.085�Na+�i + 0.1�Cl−�o
, �5�

where the ion concentrations are set to �Na+�o=130 mM,
�Na+�i=20 mM, �Cl−�o=130 mM, �Cl−�i=8 mM. Intracellu-
lar calcium dynamics are described by

d�Ca2+�i/dt = − 5.18 � 10−5ICa + ��Ca2+�i�eq� − �Ca2+�i�/�Ca,

�6�

where �Ca2+�i�eq�=240 nM is the equilibrium concentration
and �Ca=300 ms is the time constant for intracellular Ca2+

removal. All bifurcation diagrams are built using XPP-
AUTO �11�.

III. RESULTS

Potassium-mediated currents contribute to the resting
state of the membrane voltage and act against any depolar-
izing ion currents. Therefore, an increase in �K+�o, which
weakens potassium currents, causes an increase in intrinsic
excitability. Here, we show how a change in �K+�o modulates
the spontaneous activity patterns mediated by intrinsic con-
ductances in the absence of any current injection; we re-
corded nonsynaptic, spontaneous activity in hippocampal re-
gion CA3 in vitro for �K+�o=2.5 mM and �K+�o=6.5 mM
�extracellular single unit recordings �12��. For low �K+�o, all
units which we recorded from fired single action potentials
most of the time. Increasing �K+�o caused bursting to become
the prevalent firing pattern �representative units in Fig. 1�.
Bottom panel of Fig. 1 displays the probability distribution
of instantaneous frequencies �inverse of interspike intervals�
for two cells and two �K+�o concentrations. It shows that the
cells recorded in high potassium ��K+�o=6.5 mM� clearly
exhibit bimodal distribution of instantaneous frequencies
with one peak corresponding to frequencies higher than
130 Hz �interspike intervals�7.7 ms� and another one cor-
responding to frequencies less than 4.8 Hz �interspike
intervals�208 ms�. Only the latter peak corresponding to
interspike intervals larger than 208 ms was found for neu-
rons recorded in low potassium ��K+�o=2.5 mM�.

To explain these data and to understand the dynamical
mechanisms of the transition between different oscillatory

modes, we used the two-compartmental neuron model
�1�–�6�. In the following, we treat �K+�o in Eq. �5� as a con-
stant parameter to determine the stable oscillatory states as a
function thereof. We plot the Poincaré cross section,
where the intracellular calcium level is plotted at the
intersection of the membrane voltage of the axo-somatic
compartment with the manifold V=−25 mV, for a range of
�K+�o� �4.5,7� mM. In such a plot, limit cycles are repre-
sented as points defined by a threshold crossing of a trajec-
tory for different values of �K+�o. This method allows the
graphical representation of changes in the nature of oscilla-
tory behavior as a function of a parameter, in our case �K+�o.
For a given value, tonic firing is represented as a single
point, whereas bursting corresponds to a group of points.
Hence, parallel lines indicate a parameter range for which
bursting occurs. Here, the Poincaré cross section reveals
tonic firing, coexistence of tonic firing and bursting, and only
bursting for increasing levels of �K+�o �Fig. 2�. Below, we
investigate the dynamics of this model neuron for different
values of �K+�o to explain the bistability between tonic firing
and bursting in terms of the attractor landscape mediating the
two different oscillatory states. At this point, we broadly
classify the temporal activity patterns into tonic firing �which
includes other nonbursting, fast activity, such as spike dou-

FIG. 1. Top panels: Representative single unit activity for
�K+�o=2.5 mM �top� and �K+�o=6.5 mM �bottom� in hippocampal
region CA3. Ten traces are aligned by the first spike in a sequence.
In high �K+�o solution, the neurons fired bursts with several spikes.
Scale bar: 5 ms. Bottom panel: Probability distribution of instanta-
neous frequencies �calculated as inverse of interspike intervals,
N=204� for two cells for each �K+�o concentration. Cells 1 and 2
��K+�o=6.5 mM� exhibit nonzero probabilities for instantaneous
frequencies higher than 130 Hz, corresponding to spiking during
bursts. Cells 3 and 4 ��K+�o=2.5 mM� never show instantaneous
frequencies exceeding 4.8 Hz �that corresponds to interspike inter-
vals �208 ms�.
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blets with similar frequency� and bursting, which is charac-
terized by prolonged depolarization, quickly occasioning
several spikes, before incurring in spike inactivation, fol-
lowed by a pronounced after-hyperpolarization. The bifurca-
tion analysis presented below reveals two separate dynamical
mechanisms responsible for the two different activity types
defined above.

To study the dynamics of bursting, we used fast-slow
analysis by choosing a state variable with dynamics on the
time scale of individual bursts and treating it as a parameter
of the resulting reduced system. Here, the calcium-activated
potassium conductance gKCa, with a time scale at least as
slow as the already very slow �Ca2+�i dynamics, was chosen
as the slow variable. As we show below, this conductance is
responsible for burst termination after sufficient calcium in-
flux via the high-threshold calcium conductance activated
during the depolarized membrane state.

We first consider the case for �K+�o=5.9 mM which is
within the bistable region �see Fig. 2�. Although in the full
system gKCa�0 by definition, we included gKCa�0 in our
analysis to reveal the entire bifurcation structure of the sys-
tem. For all limit cycles, we show both maximum and mini-
mum dendritic membrane voltage of the oscillatory trajec-
tory on the ordinate of the bifurcation plots. The fixed points
of the reduced system follow a z-shaped line as a function of
gKCa �Fig. 3, top panel�. Two stable fixed points, Ps

down and
Ps

up, are connected by a branch of unstable fixed points Pu.
For gKCa� �0.007,0.076� mS/cm2, both stable states coexist.
Ps

up loses stability by a subcritical Andronov-Hopf bifurca-
tion at O1. Ps

down coalesces with the unstable fixed point in a
saddle-node bifurcation at O3. The following mechanism un-
derlies burst generation in this system �Fig. 3, middle panel�.
Conductance gKCa decreases while the system tracks Ps

down

because of the calcium pump’s efforts to remove intracellular
Ca2+. As a consequence, Ps

down eventually loses stability in

the saddle-node bifurcation point O3 and a transition to Ps
up

occurs. The trajectory rotates several times around Ps
up,

which is a stable focus, but never quite reaches it in the
complete system with freely running gKCa. These rotations
correspond to the rapid sequence of action potentials at the

FIG. 2. Poincaré cross section for gradually increasing �top� and
decreasing �bottom� �K+�o. Tonic firing corresponds to a single
point, spike doublets to two points, and bursting to a series of points
in the Poincaré cross section for a given value of �K+�o. Bistability
between tonic firing and bursting for �K+�o� �5.75,6.4� mM.

FIG. 3. �Color online� Bifurcation diagram for �K+�o=5.9 mM.
Stable fixed points Ps

up and Ps
down �thick dashed line� are connected

by the branch of unstable fixed points Pu �thin dashed line�. Solid
lines indicate stable �thick� and unstable �thin� limit cycles. O1,
Andronov-Hopf; O2 and O3, fold; O4, saddle homoclinic orbit bi-
furcation points. Insets show bursting and tonic spiking patterns in
the complete system with freely running gKCa. Middle and bottom
panels, enlarged region of interest. O5, Neimark-Sacker and O6,
period doubling bifurcation points. Ls indicates stable limit cycles.
Projection of the phase trajectory for the complete system during
bursting mode �solid red line, middle panel� and tonic firing �solid
vertical blue line, bottom panel�.
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onset of the burst. The decaying amplitude of the transient
oscillations is reflected in the decreasing spike amplitude in
the membrane voltage time-course during a burst. As the
system approaches this fixed point, no more action potentials
occur and the membrane voltage remains depolarized. In the
meantime, the intracellular Ca2+ concentration increases
since the cell is sufficiently depolarized to activate the high-
threshold Ca2+ conductance which mediates calcium influx.
In turn, this causes an increase in gKCa which eventually
leads to a loss of stability of Ps

up at O1. The trajectory then
falls back to Ps

down. In short, burst generation in the complete
system is mediated by periodic transitions between two fixed
points of the reduced system. These transitions form a peri-
odic orbit corresponding to the bursting dynamics.

The small-amplitude unstable limit cycle which originates
at O1 wraps around at gKCa=−0.001 mS/cm2 leading to the
coexistence of a small- and a large-amplitude unstable limit
cycle �Fig. 3�. Before coalescing with the unstable fixed
point Pu in a saddle homoclinic orbit bifurcation point
O4, the unstable limit cycle with larger amplitude in
the VD dimension becomes stable in a narrow range for
gKCa� �−0.0005,0.0045� mS/cm2 �indicated by Ls in Fig. 3,
bottom panel�. At the left bifurcation point O5, the large-
amplitude cycle gains stability through a subcritical
Neimark-Sacker bifurcation. At the right point O6 the limit
cycle loses stability again through a period-doubling bifurca-
tion. Between these two points, the limit cycle Ls remains
stable, mediating tonic firing. If this regime is present in the
complete system with freely running gKCa depends on
whether gKCa stays in the range where the cycle Ls is stable
in the reduced system. In the complete system, gKCa remains
very low during tonic firing since gCa mediating calcium in-
flux is on average only weakly activated. Also, gKCa is
bounded by zero on the left-hand side since an ionic conduc-
tance cannot become negative. Therefore it is critical for the
existence of tonic firing in the full system that the corre-
sponding limit cycle Ls is stable for arbitrarily small positive
values of gKCa. This is indeed the case for a selected value of
�K+�o=5.9 mM since the left bifurcation point O5, where the
limit cycle loses stability, corresponds to a negative value of
gKCa and therefore permits stable tonic oscillations in the
complete system. In short, the stable limit cycle of the re-
duced system Ls remains a stable periodic orbit in the com-
plete system. This limit cycle mediating tonic spiking dy-
namics coexists with the periodic orbit mediating bursting
�see above�.

We next consider �K+�o=5.5 mM. In the complete system,
we only observed firing with spike doublets �Fig. 2�. The
bifurcation diagram of the reduced system �Fig. 4� looks
similar to the previous case. In contrast to �K+�o=5.9 mM,
however, the limit cycle corresponding to tonic firing is un-
stable for gKCa�0 mS/cm2 �Fig. 4, right-hand inset�. In-
stead, a cycle of period 2 is stable within a range of gKCa
fluctuations occurring during nonbursting activity in the
complete system with freely running gKCa. To determine why
bursting does not occur in this system, we applied a set of
perturbations of different amplitudes in the vicinity of
saddle-node bifurcation point O3 �Fig. 4�. A small deflection
off the saddle-node bifurcation point caused nearly periodic
firing with period 4. A larger deflection left from O3 trig-

gered convergence to the stable upstate fixed point Ps
up.

Therefore, for low values of �K+�o the vicinity of the saddle-
node point O3 no longer belongs to the basin of attraction of
the upper stable fixed point Ps

up. For initial conditions from
the low stable branch of fixed points Ps

down, the system
reaches the saddle-node bifurcation point and then immedi-
ately jumps to the stable limit cycle with period 2, mediating
firing with spike doublets.

Conversely, for �K+�o=6.5 mM �not shown�, we only ob-
served bursting in the complete system. The bifurcation plot
distinguishes itself from the previous two cases by the fact
that for low values of gKCa there is only a very narrow region
of gKCa� �0.01,0.014� mS/cm2 for which a stable limit
cycle Ls exists. The left bifurcation point O5 occurs at a
positive value of gKCa. In the complete system, starting from
the initial conditions belonging to the limit cycle, the value
of gKCa decreases toward its equilibrium, corresponding to a
very low value of gKCa. Before reaching this point, however,
the limit cycle loses its stability at the Neimark-Sacker bifur-
cation point O5 and the system moves to the Ps

up branch,
starting a burst. Hence, nonbursting firing does not exist as a
stable state for sufficiently elevated �K+�o.

Further elevation of �K+�o �e.g., �K+�o=9 mM� changes
the type of bifurcation point O1 �Fig. 5�. The stable up state
Ps

up now loses stability via a supercritical Andronov-Hopf
bifurcation for gKCa=0.145 mS/cm2 �Fig. 5, top inset�. It
changes the burst pattern displayed by the complete system.
Rather than displaying a “smooth” transition to the low
branch of fixed points Ps

down, the system produces a series of
spikelets with increasing amplitude at the end of each depo-
larization state �burst offset�. This particular pattern was pre-
viously described in vivo �13�.

FIG. 4. �Color online� Three-dimensional bifurcation diagram
for �K+�o=5.5 mM. The Z axis shows the activation variable
of the high-threshold Ca2+ current, mICa. A small perturbation
�gKCa=0.0045 mS/cm2� left from O3 �gKCa=0.005 mS/cm2� leads
to convergence to the limit cycle �blue line starting close to O3�. A
larger perturbation �gKCa=0.001 mS/cm2� triggers convergence to
the stable fixed point Ps

up �red line starting further away from O3�.
Left-hand insets show time courses of convergence to the stable
fixed point �top, red� and limit cycle �bottom, blue�. Right-hand
inset shows the sequence of period doubling bifurcations in
Poincaré cross section, mICa=0.4.
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IV. DISCUSSION

Extracellular potassium concentration has been shown to
vary as a function of neural activity �9,10�. Specifically, po-
tassium currents tend to increase �K+�o, whereas pumps, glial
buffering, and diffusion contribute to stabilize �K+�o. When
any of these mechanisms fails to operate normally, �K+�o

rises and a neuron starts to burst spontaneously �9�, as fre-
quently observed during paroxysmal seizures in vivo �14�.
Here, we showed that nonsynaptic, spontaneous activity
changes from single action potentials to bursts in conditions
of increased �K+�o in hippocampal region CA3. Our experi-
mental approach of extracellular single unit recordings in
acute hippocampal slice does not perturb the intracellular
milieu �including �Ca2+�i, which we showed to be essential
for burst termination� and is therefore free from this limita-
tion of intracellular recordings.

Using a detailed mathematical model, we have discussed
the dynamic landscape underlying the coexistence of tonic
firing and bursting in a cortical pyramidal cell for elevated
extracellular potassium concentration. A common mecha-
nism of burst generation involves a transition between two
attractors: a stable fixed point corresponding to a hyperpolar-
ized state, and a limit cycle corresponding to spiking
�15–17�. In our model, the fast subsystem does not have such
a limit cycle attractor, and therefore spike generation de-
pends on fast rotations around the upper fixed point with
relatively weak convergence �point-point mechanisms of
bursting �16��. When the trajectory approaches this stable
fixed point, this corresponds to spike inactivation �depolar-
ization block� frequently observed during seizures in vivo
and in slices treated with high potassium and/or
4-aminopyridine �4-AP� �14�.

The bursting mechanism which we described here is es-
sentially mediated by the dynamic interaction of the high-
threshold calcium conductance gCa, intracellular calcium
concentration �Ca2+�i, and the calcium-activated potassium

conductance gKCa. During tonic firing, gCa is minimally acti-
vated and therefore gKCa stays near its equilibrium value.
This allows the spiking to continue indefinitely. In contrast,
in bursting mode, substantial calcium influx mediated by gCa

during the depolarized state causes gKCa to activate. This in
turn mediates burst termination and subsequent after-
hyperpolarization. The different levels of deinactivation of
gCa explain the bistability between tonic firing and bursting.
In the bursting mode, gCa becomes significantly deinacti-
vated during the hyperpolarized phase therefore enabling a
rapid sequence of spikes initiating the onset of a further burst
when the hyperpolarized phase is over. In contrast, when the
neuron is in tonic firing mode, insufficient gCa deinactivation
between spikes reduces the effect of this conductance and
prevents switching to the bursting mode. The persistent so-
dium conductance gNaP enables the existence of the bursting
mode by providing additional depolarizing force to suffi-
ciently activate gCa during the bursts. Accordingly, an in-
crease in gNaP shifts the bistable region to lower values of
�K+�o. A significant decrease in gNaP abolishes the bursting
regime. Introducing gh decreases the value of �K+�o for
which the neuron became active and narrowed the width of
the hysteresis �data not shown�.

Our model predicts the existence of a bistable regime for
elevated �K+�o where tonic firing and bursting coexist. Direct
experimental verification would require a tight control of
�K+�o in the extracellular environment which is probably
easier to achieve in the case of isolated neurons �e.g., in
dissociated culture�. Additionally, fluid dynamics of the per-
fusion system would need to be constrained such that �K+�o

could be rapidly increased and decreased by changing K+

concentration at the source. Furthermore, activity-dependent
changes in �K+�o would need to be suppressed to ensure con-
stant �K+�o.

Other potassium-mediated bistabilities between a silent
and active state or between two membrane voltage values
have been found both in models and experiments �18�. Bi-
stability between tonic spiking and bursting was described in
a model of a leech heart interneuron under specific pharma-
cological conditions �17�. Burst generation in this model was
mediated by transitions between a fixed point and a periodic
orbit of the fast subsystem and included bursting regimes
with arbitrary long oscillatory depolarized states.

Existence of bistability between tonic spiking and burst-
ing for an intermediate range of �K+�o predicts that in a neu-
ronal system with dynamically updated �K+�o, K+-dependent
regulation of neuronal activity may lead to complex oscilla-
tory behavior �19�. In an isolated neuron model where �K+�o

was continuously computed based on neuronal K+ currents,
K+ pumps and glial buffering, �K+�o decreased faster during
periodic bursting and slower during tonic firing �9�. Since the
�K+�o gradient depends on the frequency of firing, excitation
mediated by lateral synaptic connections between neurons
may increase the frequency of tonic spiking sufficiently to
provide �K+�o elevation during tonic spiking throughout the
network of neurons. On the other hand, frequency of bursting
is mainly mediated by intrinsic cell properties—rate of deac-
tivation of the calcium-dependent potassium conductance

FIG. 5. �Color online� Bifurcation diagram for �K+�o=9.0 mM.
Projected trajectory of full system �thin solid line, red� shows tran-
sient oscillation at the end of the burst before switching to Ps

down.
Top inset, supercritical Andronov-Hopf bifurcation at O1. Bottom
inset, membrane �soma, VS� voltage time-course during burst.
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during the intraburst interval—and, therefore, the �K+�o gra-
dient during bursting can stay negative even in the presence
of excitatory synaptic connections. This suggests that
activity-dependent modulation of intrinsic excitability can
lead to sustained oscillations in a cortical network with slow
transitions between two distinct firing modes—tonic spiking
and bursting—mediated by slow �K+�o oscillations. Ex-
amples from in vivo experiments where such transitions were
observed include the transition between fast runs and slow
bursting during spike-wave seizures �20� and periodic tran-

sitions between slow-wave and fast-wave oscillations in ol-
factory cortex �21�.
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