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Abstract 

A coupled linear chain of Hindmarsh-Rose model neurons with reciprocal inhibition between neighboring neurons exhibited 
synchronous oscillations in which neighboring neurons burst out-of-phase and next nearest neighbor neurons burst in-phase. 
The bifurcations observed inside this "out-of-phase" regime were qualitatively the same for all chains with an even number 
of neurons and were similar to those observed in a single isolated cell, although the organization of the behavior of a chain 
of coupled neurons was more regular than that of an isolated cell. When noise was added to the synaptic coupling strengths, 
there was less hysteresis in the system and many of the bifurcations with smaller basins of attraction were eliminated, making 
the system even more regular. These results suggest that in populations of bursting neurons with reciprocal inhibition, the 
chaotic behavior found in single cells is suppressed. Copyright © 1998 Elsevier Science B.V. 
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I. Introduction 

The cooperative dynamics of  lattices or chains 

of coupled generators has been the focus of  con- 

siderable interest for modeling extended chemical, 

biological, and fluid systems. Theoretical studies of  

cooperative behavior include lattices of  coupled oscil- 

lators [14,28], the complex Ginsburg-Landau system 
[17,24], lattices of  coupled maps [4,22], and lattices 
of chaotic generators [3]. 

Neurons have a wide variety of  voltage-dependent 

ionic currents that give rise to complex dynamical be- 
haviors. In studying the dynamical properties of  neu- 

ral systems with model neurons coupled in lattices and 

* Corresponding author. E-mail: bazhenov@salk.edu. 

chains [2,7,10,13,23], a wide range of models for sin- 

gle neurons has been explored, including phase oscil- 

lators, leaky integrate-and-fire models, two-time-scale 

oscillators, and chaotic systems. In models of  synap- 

tically coupled neurons, the type of  coupling is also 

important in determining the dynamical properties of  

the neural system. 

For the diffusive-type coupling, generally used to 
model physical and chemical extended system, the 

coupling is proportional to linear differences between 

variables describing the states of  neighboring genera- 

tors. This is not a suitable model for synaptic trans- 

mission in neuronal systems, where there are complex 
nonlinear mechanisms with history-dependence [11]. 

In the simplest case where time delays and internal 
variables are ignored, the synaptic coupling is often 
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modeled as a static sigmoidal nonlinear input--output 

function with a threshold and saturation. The detailed 
features of this function depend on the type of synapse. 

The analysis of lattices of synaptically coupled neu- 
rons may help in understanding the spatio-temporal 

patterns of the neural activity found in the brain. These 

systems are also of interest mathematically since they 

exhibit new dynamical properties. 

In this paper, we study the synchronization and bi- 
furcations observed in chains of synaptically coupled 

chaotic bursting neurons modeled by the Hindmarsh- 

Rose (HR) equations [20]. In Section 2 we consider 

briefly a single HR ceil. The dynamics of coupled HR 

models of bursting neurons is examined in Sections 

3-6. Particular attention is given to the effect of the 

coupling on the chaotic behavior of the system, al- 
ready present in isolated bursting neurons, when there 

is inhibitory coupling between the nearest neighbors 

along a chain. Mutually inhibitory coupling between 
neurons is common in central pattern generators [5,27] 

and is also found between inhibitory neurons in the 

reticular nucleus of the thalamus [29]. Both in-phase 

and out-of-phase synchronization of spiking has been 

observed in these networks, depending on the con- 

nectivity and dynamics of the coupling between the 
neurons as well as the properties of the neurons them- 

selves. 

A detailed analysis of out-of-phase synchronization 

for 2-coupled chaotic HR neurons has already been 

presented in [1,32]. These results are extended here 

with a focus on the stability and the bifurcations of 

the limit cycles in the out-of-phase regime. 

2. The  d yn am i c  o f  the single H i n d m a r s h - R o s e  
model  neuron 

The HR model [20] was developed as a qualitative 

model for the rhythmic bursts of spikes that occur in 

thalamic cells following hyperpolarizing current injec- 

tion and activation of a low-threshold calcium current 
[29]. It is a simplification of a more detailed biophysi- 
cal model that takes into account the properties of the 
ionic currents underlying the fast sodium spikes and 

the bursts of spikes that ride on a slower calcium ac- 

tion potential [9]. The HR model consists of a third- 

order system of ordinary differential equations that is 

more amenable to analysis: 

~f = F l ( x ( t ) )  + y - z + l ,  

~' = F2(x( t ) )  - y. (1) 

1 
- ~ = - z + S ( x - C ) ,  r << 1. 
F 

where the functions Fi (x) and F2(x) were chosen to 
display the generation of bursts of spikes and are usu- 

ally written in the form 

F l ( x )  = 3 x  2 - x  3. F2(x) = 1 - 5 x  2. (2) 

The variable x ( t )  in (1) describes the membrane poten- 

tial of the cell. The other two variables, y ( t )  and z( t ) ,  

are responsible for the fast and slow ionic currents of 

the cell. The parameters of the model in Eq. (1) are the 

injected current (1), the voltage threshold (C), the in- 

fluence of membrane potential on the slow dynamics 

(S), and the time scale for slow subsystem (r). 

The set of equations (!) exhibits several forms of 
dynamics that depend on the values of parameters 1, 

S and C. We choose as the basic bifurcation parame- 

ter the external current 1 because this variable can be 

measured and controlled during experiments on burst- 
ing neurons. The values of the other parameters were 

taken to be S = 4, and C = -1.6.  Finally, the small 

parameter r was set to be equal to 0.0021. 

Fig. 1 shows the coordinate y versus parameter I on 

the secant x = 0. To each interval 1 ~ (/If),- ~12)) there 

corresponds a stable limit cycle Li, where i = 1,2 . . . .  

is the number of spikes in the burst. The cycle Li loses 

its stability at the end of this interval and the cycle Li+l 
or Li 1 appears. Note that, in a general case, I,~ 2) > 

i~)  i+t; therefore, there exist narrow regions of the values 
/ i (1)  1i(2)) in which two stable of the parameters l 6 ','i+1, 

cycles having different numbers of spikes coexist. The 

result of investigation of the bifurcations of the limit 

cycles Li, i = 1,2 . . . .  is the following: L l ( -  I, + l ), 

L 2 ( - I ,  +1), L3( -1 ,  +1), L4(-1 ,  +1), L s ( - I ,  +1), 
L6(-1 ,  +1), LT(-1,  +1), L s ( - I ,  -1 ) ,  L9(+I ,  - 1 ) ,  
L jo (+ l ,  - 1 ) ,  Lit (+1, - 1 ) ,  L j2(+I ,  -1 ) .  The desig- 
nation Li ( - 1 ,  +1) means that the cycle Li (which is 
stable in the interval 1 6 (ii(I), 1i(2))) has multiplier 
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The system under study is 

dxi  
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Fig. 1. One-parameter Poincare map as a function of external 
current I for HR model (1) of a single bursting neuron. 

- 1  with the second Lyapunov exponent 1 > 0 at the 
• (1) it(2) point I = ~i , and multiplier + 1 at the point I = . . 

For I > 3.221, a strange attractor emerges in the 

phase space of the system (1) as a result of a se- 

quence of  period-doubling bifurcations. Finally, for 

I >_ 3.295, the system in Eq. (I) ceases to generate 

bursts, and the dependence x (t) is a chaotic sequence 

of spikes (see details in [15,16,21,31]). 

We have considered the behavior of the system at 

fixed values of  the parameters S and C. However, the 

analysis of the bifurcations presented above is qual- 

itatively valid over a wide range of  intervals of the 

parameters S(I)  and C(I). 

3. Poincare  sect ions "inside synchronizat ion" for 
coupled  neurons  

The main goal here is to characterize the dif- 

ferent regimes of  synchronization observed in the 

model system as a function of the strength of  the 
inhibitory coupling and the number of coupled neu- 

rons. We focus on even numbers of coupled neurons 

because networks with 2-, 4- and 6-coupled HR neu- 

rons show similar transitions between limit cycles 

as a function of the control parameter. Models with 
small odd numbers of coupled HR neurons are not as 
similar. 

dyi 

dt 
dzi 

~- Yi + 3x2i - x] - zi + I 

xi +V, .  

--E 1 +exp( (x i_ l  -- X) /a )  

_ x i + V , .  ) 

1 + exp((xi+l -- X)/~r) ' 

= 1 - 5 x ~ - y i ,  

(3) 

=--rz i  q-rS(xi q- 1.6), 
dt 

where r = 0.0021, I = 3.281 and S = 4. The bound- 

ary conditions are periodic, with the last element cou- 

pled to the first one. 

The Poincare sections were calculated for x0 = 

0.5, a membrane potential that occurs during a spike. 

Figs. 2(a), (c), and (e) show the projection of the 

Poincare section on the coordinate z for even number 

of coupled HR models for increasing (upper figure) 

and decreasing (lower figure) values of the control pa- 

rameter. 

For small values of the coupling parameter E < 

(1) the system behavior is generally chaotic. Ecr = •9 
More detailed analysis reveals that there exist narrow 

intervals in the strength of the coupling E where the be- 

havior of the system is regular. Within these intervals 

the model neurons display "in-phase" synchronized 

oscillations. The behavior of the system changes com- 

pletely for ~ > Ecr. Beginning at E = ~cr, the system 

demonstrates regular oscillations with "out-of-phase" 

synchronization between the elements. Increasing the 

strength of the coupling for ~ > ~cr produces a se- 

quence of  local bifurcations of the periodic orbits. At 

every bifurcation point, ~ = ~1), the periodic orbit 

Lk with k spikes on the burst loses stability and the 

system evolves to a periodic orbit Lk+l with k + 1 

spikes. If  ~ is decreased then the opposite behavior is 
(2) the periodic regime observed (at the point ~ = 6~+~ 

(2) (1) for all k, in Lk+l loses stability). Since ~k+l < ~k 
the neighborhood of the bifurcation point the stable 

periodic orbits with different number of spikes (and 

consequently with different periods) coexist, and the 
initial conditions determine which regime is realized, 
a form of hysteresis. 
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Fig. 2. One-parameter Poincare maps as a function of the strength of the reciprocal inhibitory coupling ~ between neighboring 
neurons in a linear chain for: (a) two; (b) three, (c) tour, (d) five, and (e) six HR model cells. The arrow indicates the direction in 
which the control parameter ~ was varied to produce the map. 

For  4- and  6 -coup led  inh ib i to ry  neurons ,  the same 

qual i ta t ive  b e h a v i o r  is obse rved  as for  the two-neu ron  

case.  The  ma in  d i f fe rence  is that  the n u m b e r  of  in- 

h ib i to ry  inputs  for  neu rons  in the midd le  of  the cha in  

has  doubled ,  p rov id ing  s t ronger  input ;  this  resul ts  in 

a larger  n u m b e r  of  spikes in each  burs t  for  the same  

value of  the coup l ing  s t rength  c o m p a r e d  to the two- 

neuron  case.  
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It is important to note that for ~ > Ecr, the bifurca- 

tions occur during out-of-phase synchronization and 

only modify this behavior by changing the number of  

spikes in a burst. Hence, we call this regime "bifurca- 

tion inside synchronization". 

These results show the similarity of the behavior not 

only between systems with 2, 4 and 6 coupled neurons 

but also between these systems and a single HR cell. 

In all cases, increasing one of the parameters (external 

current for a single cell and strength of the coupling 

for coupled cells) results in a similar sequence of  bi- 

furcations between cycles with different numbers of  

spikes per burst (compare Figs. (1) and (2)). 

For 3 coupled inhibitory neurons, the behavior is not 

as regular as the case for two neurons (see Fig. 2(b)). 

First, much stronger coupling is needed to make the 

behavior regular. Second, the sequence of  limit cycles 

is not ordered as before. Finally, the sequence of  at- 

tractors observed for increasing values of  the control 

parameter is not the same as for decreasing values. As 

a consequence, multistability occurs over broad inter- 

vals of  the inhibitory coupling strength. The complex- 

ity of the system with 3 coupled HR neurons is thus 

significantly greater than that for 2 coupled neurons. 

The number of spikes is different on successive bursts, 

which implies a lower degree of  symmetry than found 

with an even number of neurons in the chain. 

In Fig. 2(d) the Poincare section for 5-coupled neu- 

rons, a strong coupling is needed to achieve a regular 

behavior, but less strength is required than for 3-HR- 

coupled neurons. Although multistability is still evi- 

dent, the appearance of  the Poincare section is more 

similar to the cases with even numbers of neurons. As 

the number of neurons in the chain becomes large, the 

behavior of even and odd chains should converge. 

The multistability observed in system with an odd 

number of  coupled neurons can be explained by 
taking into account the translation symmetry of the 

system and the periodic boundary conditions. For an 

even number of neurons in the out-of-phase regime, 

the translation operator to the chain produces the 

same limit cycles, where the translation operator is 

defined as cr : (Xi+l,Yi+l,Zi+l) ~ ( x i , Y i , Z i )  for 
i = I . . . . .  N w i t h i = N + l  --+ 1. There must be a 
single limit cycle for any initial condition. In contrast, 

for odd numbers of  elements in the chain in the out-of- 

phase regime, application of  the translation operator 

produces a different limit cycle (because the number 

of  spikes per burst is not the same for all units). In 

the case for an odd number of neurons, N limit cycles 

can be realized for different initial conditions. 

4. Local bifurcations for model of coupled neurons 

Consider in detail the local bifurcations of the limit 

cycles in the system of 2-, 4- and 6-coupled elements. 

We are mainly interested in analyzing the case E > ~cr 

when the stable regimes of the out-of-phase oscilla- 

tions are observed in the system and increasing the 

control parameter E transforms the regime of the oscil- 

lations with N spikes to the regime with N + 1 spikes. 

For 2-coupled cells only the oscillations with N > 8 

are stable and the bifurcations satisfy: Lg. 10(- 1, + 1 ), 

L k ( + l ,  +1),  k > 10. Thus, all bifurcations points 
E~I,2) are a saddle-node type except for two points E9 ~l) 

~1~ which correspond to flip bifurcations of the and ~10 
cycles L9 and Ll0. I These points have an interesting 

feature. In both cases when ~ decreases the highest 

multiplier achieves a value of +1 (saddle-node bifur- 

cation) before flipping to a value of - 1  (Fig. 3(a)). At 

0 (#(~0) = +1)  the cycle L9 (LI0) the critical point ~k 

has neutral stability in one of  the directions. How- 

ever, the bifurcation does not occur at this point and 

a further decrease of the control parameter induces a 

smooth decrease of the multiplier. In the vicinity of 

the points ~1), k = 9, 10, the system undergoes a se- 

ries of period-doubling bifurcations that lead to the 

formation of a strange attractor [25,26]. 

The local bifurcations observed in chains with 

four and six neurons are exactly the same as the 

ones found in the two-neuron model: L9.10(-I ,  +1),  
L k ( + l ,  +1),  k > 10. In particular, the dynamics of 

the model in the vicinity of the flip bifurcation points 

~J) has a profile highly similar to that for E~ II and ~1o 
2-coupled neurons (Figs. 3(b) and (c)). This is not 

surprising since the Poincare sections for the regions 

. (I) (2).  
I T h e  c y c l e  L k is s table  in the  r e g i o n  E E t~ k , ~k ~ 
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Fig. 3. Real part of the multipliers for: (a) 2-; (b) 4-; and (c) 
6-coupled HR models as a function of increasing inhibitory 
coupling ~ for a period-doubling bifurcation. Note the similarity 
of the system dynamics in the vicinity of the bifurcation points. 

(I) of the chaotic dynamics near the points %(I) and ~:10 

are so similar (see Fig. 2). 

Does the similarity between the models with two 

and four neurons generalize to even larger networks? 
We simulated a chain of 50 reciprocally inhibitory 

coupled elements (not shown) and found the same 

"out-of-phase" patterns. This suggests that some of the 

conclusions reached for chains with an even number 

of neurons may hold for larger chains, and perhaps 
even in the limit as the number of neurons goes to in- 

finity. However, there may be important differences in 

these models that need to be further investigated. 

5. Two-parametric bifurcation diagram for 
2-coupled neurons 

The external current I was used as a control 
parameter for one-parameter bifurcation diagrams in 

Section 2. To analyze the relative role of this parame- 
ter in comparison to the strength of the coupling, we 

examined a two-parameter bifurcation diagram, I (e), 

for 2-coupled neurons (see Fig. 4). The bifurcation 
points E~ j'2) have a codimension-I and transformed 

to the curves e~l.2)(I) on the plane 1 (6). The analysis 

of the plane I (e) reveals some interesting features of 
system (3). First, the bifurcation points ~1) and ~2) 
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Fig. 4. Two-parameter bifurcation diagram as a function of the 
external current 1 and the inhibitory coupling strength ~ for 

2-coupled HR models. The points a~, 12) correspond to bifurca- 

tions of codimension-2. The upper segments of the curves %,  

El0 and ~1"1 (above of the points ~9'  ~]0 and ct~l, respectively) 
correspond to a saddle-node bifurcation and the lower segments 
of the same curves correspond to the Neimark-Sacker bifurca- 
tion. In contrast, the upper segments of the curves 611 and el2 

(above of the points Otl l and ~12' respectively) correspond to 
the Neimark-Sacker bifurcation and the lower segments of the 
same curves correspond to a saddle-node bifurcation. 

corresponding to the increasing (~1)) and decreasing 

(~2)) values of the control parameter have the same 

type (saddle-node) only in the narrow interval of the 

values of the parameter I ~ (3.2, 3.4). This interval 

includes all regions of the chaotic dynamics observed 
in single HR model (see Fig. l). 

The analysis of the two-parameter bifurcation di- 
agram shows another interesting property of system 

(3).Outside the previously mentioned interval I 

(3.2, 3.5) the bifurcation curves are almost parallel to 

each other and there is an almost linear relationship 
(1.2) + o~(1.2)i In this region any change of 6~ 1"2) ~ 6k0 

the parameter ~ can be balanced (from the point of 
view of the stability of the limit cycles) by a propor- 

tional change of the parameter I. This last point is not 

trivial if we consider that I is the amplitude of the 
effective external current permanently applied to the 
neurons in the chain and ~ defines the amplitude of 
the synaptic current, which is nonzero during the fir- 
ing of the neighboring cells. Thus, from the point of 
view of the local stability of periodic orbits (at least), 
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a change in the amplitude of synaptic current pulses 

is equivalent to adding some constant current, such as 

a leak current. In other words, the effects of changes 

of  the synaptic conductances between neurons (a lo- 

cal property) can be compensated by external currents, 

which could be achieved by a global neuromodulator. 

6. Effects of noise on bifurcations in the model of 

coupled neurons 

The model of coupled neurons (3)considered so far 

does not take into account the noise that is present in 

biological systems as a consequence of  fluctuations in 

the ionic currents in the neurons and the synapses. The 

influence of noise on the dynamics of  the system is 

particularly strong near critical points (bifurcations), 

where the system is sensitive to small changes in the 

input and the noise can switch the behavior from one 

regime to another. To test the effect of the noise we 

investigated the dynamics of  a modified system 

dx i  
: Yi + 3x~ -- x3i - -  Zi + I - -  (~ + r i f t ) )  

d t  

x i + V c  

× 1 +exp(x i_ l  - X / c r )  

x_, +_ y,_ 
1 + exp(xi+l -- X / c O  } ' (4) 

dy i  = 1 - 5x~  - vi ,  
d t  

d z i  
- -  r z i  + r S ( x i  + 1.6), 

d t  

where 0(t) is a zero-mean additive white noise with 

variance a.  This model was examined near the bifur- 

cation point corresponding to the transition between 

the regimes L9 and L 10. Qualitatively different behav- 
ior was observed in the transition between regimes in 

the presence of noise compared with the absence of 

noise. Without noise, the system displayed strong hys- 
teresis, as shown in Fig. 5(a) and (b). In presence of 

noise, shown in Fig. 5(c) and (d) the hysteresis region 

was smaller and the behavior of the system showed 
less dependence on the initial conditions. In the pres- 

ence of noise, the fluctuations in the membrane po- 

D 116 (1998) 392-400 

tential was larger near bifurcation points compared to 

when the system was far from a bifurcation. Near bi- 

furcation points, the system could suddenly "switch" 

between different regimes (Fig. 5(d)). Thus, noise pre- 

vented the appearance of attractors with small basins 

and, therefore, reduced the multistability of  the sys- 

tem. 

7. Discussion 

Complex rhythmic behaviors have been observed 

in a wide range of  biological systems including cen- 

tral pattern generators [19,27], thalamocortical sys- 

tems [9,12,18,29] and the cerebellum [30]. The focus 

of this paper has been on the qualitative properties of 

bursting neurons and the influence of mutual inhibitory 

coupling on cooperative states. 

Reciprocal inhibition leads to out-of-phase oscilla- 

tion of neighbor neurons in a linear chain of model 

neurons based on bursting neurons in the thalamus. 

The number of spikes in a burst increases as the 

strength of  the reciprocal inhibition is increased. The 

model with coupled neurons displayed less chaotic 

behavior than that observed in an isolated model neu- 

ron. We showed that the codimension-1 bifurcations 

lead to the regularization and switching between pe- 

riodic regimes with different numbers of spikes. The 

same phenomenon may occur in other more complex 

systems that display synchronous activity, such as 

spindling in thalamocortical systems [3]. 

Chains of bursting neurons coupled synaptically 

exhibit a new type of organized phenomenon not 

found in models with traditional diffusive coupling. 

Inhibitory coupling between bursting neurons pro- 

duces several types of  out-of-phase oscillations. The 

nonlinear synaptic coupling allows limit cycles to 

occur in the coupled model even though single neu- 

rons are situated in their chaotic regime. The coupled 

model, which nonetheless exhibits the same types of 

bifurcation that appear in the isolated cell, also has 
smaller regions of bistability near the saddle-node 

bifurcations for an even number of coupled neurons. 
This does not occur in chains with an odd number of 

neurons. 
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Fig. 5. One-parameter Poincare map as a function of the strength of the inhibitory coupling, E, for 2-coupled HR models: (a) without 
noise for increasing values of the coupling; (b) without noise for decreasing values of the strength of the coupling; (c) including 
additive white noise with variance 0.08 in the synaptic strength for increasing values of the inhibition; and (d) with additive white 
noise with variance 0.08 in the synaptic strength, ~, for decreasing values of the inhibition. 

We calculated the bifurcations for a chain of 2, 4 

and 6 neurons. They were the same as those in an 

isolated bursting neuron, including the same depen- 

dence of the multipliers and the period as a function of 

the control parameter. However, the stability of longer 

chains of coupled neurons needs further investigation. 

It is possible that instabilities will appear, such as the 

modulation instabilities that are typical for extended 

systems [17]. For example, it has been shown that the 

homogeneous solution of two-dimensional network of 

synaptically coupled inhibitory and excitatory neurons 

becomes unstable and spatio-temporal chaos appears 

if the size of the network exceeds some critical value 

[2]. 

The results reported here are a starting point for a 

more detailed analysis of the bifurcations in bursting 

systems of coupled inhibitory. 
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