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Spike-train bifurcation scaling in two coupled chaotic neurons
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We investigate the variation of the out-of-phase periodic rhythm produced by two chaotic neurons
(Hindmarsh-Rose neurond. L. Hindmarsh and R. M. Rose, Proc. R. Soc. Londd2® 87 (1984]) coupled
by electrical and reciprocally synaptic connections. The exploration of a two-parametric bifurcation diagram,
as a function of the strength of the electrical and inhibitory coupling, reveals that the periodic rhythms
associated to the limit cycles bounded by saddle-node bifurcations, undergo a strong variation as a function of
small changes of electrical coupling. We found that there is a scaling law for the bifurcations of the limit cycles
as a function of the strength of both couplings. From the functional point of view of this mixed typed of
coupling, the small variation of electrical coupling provides a high sensitivity for period regulation inside the
regime of out-of-phase synchronizatid®1063-651X97)50603-9

PACS numbds): 05.45+b, 87.10+e

Individual neurons often generate chaotic oscillation We investigate two identical coupled model neurons
[2,3], but circuits of them can demonstrate periodic pulsa-which interact through both electrical and reciprocal, inhibi-
tion. In order to answer the important question of how neuratory coupling. Each model neuron is a Hindmarsh-Rose os-
assemblies get and control regular rhythm, we investigatéillator, and the differential equations of the coupled system
here the simplest chaotic neural circuit. We work with two are given by
model neurons coupled electrically and synaptically. The dy-
namics of each neuron is chaotic and spiking burstih %=x2+ 3x§—xf—x3+l — €
[see Fig. 14 Such dynamics are typical for many neurons in dt
cortex[4] and small neural systems like the central pattern
generator§CPQ that control the rhythmic motor behavior
of animals [5—8]. The most typical connection between ~€e(X17Xa) 2)
spiking-bursting neurons in CPGs is reciprocal inhibition fol-
lowed by electrical couplingsee the booK9]). On a few —Z2=1-5x2—X,, @)
occasions, both inhibitory and electrical coupling appear to- dt
gether connecting two neurons. It is not a trivial problem to
under;tz_and the nonlinear dynamics of neurons .with such an- % =—rX3+rS(x;+1.6), 3
tagonistic types of coupling. As has been previously shown dt
[3,10], sufficiently strong inhibitory coupling between cha-
otic neurons organizes regular out-of-phase rhythmic behav- %
ior. The change of the strength of the inhibitory coupling is dt X1—X
responsible for the variations in the number of the spikes in 1+exp——
each burst. A saddle-node bifurcation takes place to elimi-
nate the limit cycleL;, but another limit cycle withi +1 — €e(X4—X1) (4)
spikes in each burst is already present. How is the electrical
coupling affecting the dynamics and the bifurcations of such % —1-Bx2—x (5)
a system ? Such a connectivity pattern appears contradictory dt 4 e
for experimentalists as electrical connections are usually
present to ensure in-phase oscillations while reciprocal inhi- dxs
bition is expected to produce out-of-phase oscillations. A dt
parallel goal for this work that goes along with the investi-
gation of the nonlinear dynamics of this complex system iswherel=3.281,r =0.0012, neuron 1 is given by the vari-
to provide a functional explanation for their appearance toables &;,X,,X3) and neuron 2 is given byx{,Xs,Xg). €; iS
gether. the strength of the synaptic coupling with the reverse poten-

X1+ V¢

X4_X
1+expT

Xq+V
=X5+3X5—X3—Xg+ | — ¢ <

=_rX6+rS(X4+ 16), (6)
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The bifurcation curves;= e")(e,) for k=10,...,18 are
presented in Fig. 2. For sufficiently small €{?, () can
be approximated by the expressieft?= e} 12+ o Ve,,
Wheree’k‘(l'z) is the bifurcation point corresponding to purely
inhibitory coupling €,=0) and «{'? defines the slope of
the curves. The scaling law for the bifurcation curves is well
approximated by

a2l al?=glkl(k+1)]2, @

wherek is the number of spikes per burst. The value of the
constant is fitted from the slopes of Fig. 2, and it has a value
FIG. 1. (a) Typical time series generated by a chaotic =1.42+0.01. This means that Eq7) gives a good de-
Hindmarsh-Rose mode(b) Typical saddle-node bifurcation of one scription of the scaling properties.
stable limit (solid line) and unstable limitdashed ling cycle for In order to provide an explanation for this scaling law we
two coupled Hindmarsh-Rose models, in fact, both limit cycles|ook for a measure of the distance between the limit cycles of
(stable and unstablare very close. The distance between them has|gse dynamical systems, i.e., for small perturbations of the
been exaggerated. parameters. This measure of the distance will be used to
. . . , quantify the direction of the variation of the parameters on
t!al V.=1.4. Since each neuron must_ receive an input every,q plane €. ,e€;) that achieves a minimal change of the limit
time the other neuron produces a spike, wese0.01 and  cycje At the same time, it provides a maximum variation

X=0.85. The strength of the electrical couplinges. The 4t is directed towards the bifurcation boundaries. One can
detailed investigation of the bifurcations and crisis of Oneimagine that “minimal” lines must have a similar slope to

single model can be seen [ii0—-12. o _ the bifurcation curves. We can define a distance between the
Let us consider the local bifurcations of the limit cycles in ;. cycle for a particular value of* with no electrical
the SySte”@- We will de_note b.yLk the periodic trajectory coupling and the limit cycle for any sr;wall value gf. Let us
cc_)rrespon_dmg(gl"tg the regime v_wthsplkes per burst and W€ " denote byx* (t,€,0) a solution corresponding to the limit
will name in ¢ the left and right boundaries of the region cycle for e,=0, and byx(t,e + ae,,e,) a solution of the
[e(kl)(69)<6‘<6'(<2)(69)(})’ w(r;?re the cycld. is stable. The .y cycleewitﬁ €=€ +a,e; and electrical couplinge, ,
pair of multipliers (", u”) is connected to every cycle here represents the linear dependence. The distance be-
Ly and indicates the kind of bifurcation at the points {\een these two trajectories is defined by
(et ,€2). Then the conditionu{!?=+1 determines a sad-
dle-node bifurcation and the condition{*?=—1 deter- T* . e
mines a flip bifurcation. As is well known the codimension |ee(a)= fo [X(t,& +aee,e0) —X*(t,&,0)]°dt, (8)
one saddle-node bifurcation results when one multiplier
crosses the complex unit circle &tl, which means that one
stableL; and unstablé; limit cycle merge together to anni-
hilate, see Fig. (b) as an example.
The analysis of the stability of the cyclés, for e,.=0

where T* is the period of the limit cycle* (t,€,0) and
X(0,e +a€,€;) is reset to the nearest point of
X(t, € + a€e, €) 10 X* (0,6 ,0), that is, both solutions of the

: . i limit cycles in the functiona(8) are set to the same phase. In
gives the following resultsk  (+1,+ 1) for all k>10. Thus ;
the bifurcations of the cyclek, are saddle node. As the f|g. 3 we Cah see the computat|onlg;‘(_a) for small e, gn_d
parametek; increasegdecreasesa sequence of bifurcations € — 2-0, which corresponds to the limit cydlg,. The mini-
is observed. At each bifurcation point the cytle with k ~ mum is located at,,=—11.36, which, in fact, has a little
spikes per burst disappears through a saddle-node bifurcit larger value than the bifurcation slope 4= —18). The
tion. value e =2.0 lies far from the bifurcation curve; whenis
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FIG. 3. Measure of the distancéd) for €*=2.0 and FIG.. 4. a value that .gives the_min_ima of the d.istari(;ee(a) as
€.=0.0002, which corresponds to the regitn,, as function & function of the electrical coupling in some regions of the stable
of a. limit cyclesL,.

have created a frequency regulator which allows stable os-
gillations at selected values over a wide range of operating
frequencies. The bifurcations that the model demonstrates
are a welcome robustness arising from the particular cou-
A i o pling of these chaotic oscillators. Precise values of the
4 we can see the valuesthat give the minima of the func-  cnemical couplinge; need not be reached to achieve func-

. . . .
tional as a function ok, for several values of" located in 5ty associated with particular oscillation frequencies.
the middle of the area between the bifurcation curves. If we
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getting closer to the bifurcation point;, decreases its value
to match the bifurcation slopes. We want to find out whethe
or not the values for the minima ¢f («) follow a similar

scaling law to the bifurcation curves given by Ed@). In Fig.
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