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Abstract 

The structure of the phase space of stationary and quasi-stationary (i.e., uniformly translating) solutions of 1D CGLE 
is investigated by methods of the qualitative theory of ordinary differential equations. The Nozaki-Bekki holes are seen 
as heteroclinic connections which are made structurally stable by an involution symmetry in phase space. The existence 
of a countable set of double-loop heteroclinic trajectories is proved, which corresponds to complex "shock-hole-shock" 
structures both motionless and moving with constant velocity v0 along the x-axis. 

1. Introduction 

We consider the complex Ginzburg-Landau equa- 
tion 

O,s = s - ( 1 + i/3) I sl2s + (1 + ia )  92xs, ( 1 )  

which describes the spatio-temporal evolution o f a  1D 
extended system near the Hopf  bifurcation point. Eq. 
( 1 ) has a family of  hole solutions in the form [ 1 ] 

Sh ( X - -  rot ,  t) = [Ah(X -- rot)  + r/v0] 

× exp[iOh(x -- rot )  + i p v o ( x  -- rot )  -- ig2t], (2) 

where 

A~(~:) = h tanh(k~:), 

dOh/d (  = K tanh(k( ) .  

Here A, K, and v0 are real constants, r / i s  a complex 
constant, a n d p  = 1 / 2 ( a - r ) .  For~: = x - r o t  --~ 4-oo, 

the solution (2) tends asymptotically to solutions in 
the form of plane waves, 

sai(~,  t )  = V/1 - Q2ie-ia'+iQg, i = 1,2, (3) 

with asymptotic wave numbers QI (for s c ~ - o o )  
and Q2 (for ( --* +oo) .  The frequency s2 satisfies the 
dispersion relations 

.(1 = o~( Q i )  - voQi, 

w ( Q i )  = f l  + ( a - f l ) Q 2 .  

From (4) one can readily find 

(4) 

w ( Q 1 )  - voQ1 = w ( Q 2 )  - voQ2. (5) 

Condition (5) is, actually, the condition o f  the conser- 
vation (in a moving reference frame) of  the constant 
phase difference between the asymptotic (for ( 
+oo)  limits of  the solution (2).  
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Eq. (2) describes a structure moving along the x- 
axis with constant velocity vo. For v0 = 0, (2) takes a 
very simple form, 

Sh ( X, t) = Ah ( x ) e i°h ( x ) -itot, (6) 

where 

A n ( x )  = V/1 - O 2 t a n h ( k x ) ,  (7) 

dOh 
- - Q  tanh(kx) .  (8) 

dx 

The structures (2)  and (6) are sources of  plane waves 
[ 2].  Another type of  solution to ( 1 ) we will be inter- 
ested in is a shock solution. It is a sink that is formed in 
the interaction of  two opposing incident plane waves. 
The solution corresponding to a fixed (motionless) 
shock may be written as 

Ss(X, t) = A s ( x ) e  i¢~(x)-iwt. (9) 

Here As(x)  > 0, As(x) ~ V/1 - Q 2 , 0 ~ ( x )  ~ + Q x  
for x ~ +o~. 

Fig. 1 shows the field amplitude distribution typical 
of  Eq. (1) .  The distribution contains a sequence of 
alternating holes (sources) and shocks (sinks).  

Let us make a substitution of  variables s ( x ,  t) = 
a ( x ,  t ) e  -i'Ot in Eq. ( 1 ) and pass to the reference frame 
moving with constant velocity vo. We obtain 

tgta = voO¢a+ ( 1 + i . O ) a -  ( 1 +i,B)lal 2a+  ( 1 + i a ) a ~ a .  

(10) 

Stationary solutions of  the evolution problem (10) 
satisfy a system of  ordinary differential equations in 
R4: 

da 
~-~ = b, 

db l + i d 2  i_~ii~ vo 
ds c - 1 + i---a a +  lal2a 1 + i - ~  b" (11) 

System ( 11 ) will be analysed in detail in this paper. 
The phase space structure for v0 = 0 will be considered 
in Section 2. We will show which phase trajectories 
correspond to fixed hole and shock structures and we 
will discuss their structural stability. In Section 3 we 
will prove the existence of  multiloop heteroclinic tra- 
jectories corresponding to complex structures which 
consist of  a sequence of holes and shocks. Finally, the 
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Fig. 1. Snapshot of the field amplitude Is(x, to)l of Eq. ( ! )  
for a = 0, fl = 1.5 (a) and a = 0.6,/3 = 2 (b) in the region 
{ - L  <~ x ~ L} ,L  >> 1 with periodic boundary conditions. 
Motionless structures, i.e. holes (sources) and shocks (sinks), 
alternate. 

results obtained will be generalized to the case v0 4 : 0  
in Section 4. 

2. S t a t i o n a r y  s tructures  

Let us take v0 = 0 in ( 11 ) and consider a system of  
equations 

da b, db 1 + i / 2  1+i/3, .  I 
- -  = - - - a +  a l 2 a .  ( 1 2 )  
dx dx 1 + ia  1 + wt 

Note that the case v0 = 0 is the physically most inter- 
esting case. It was shown in Ref. [3] (see also Ref. 
[4] ) that, when the right-hand side of  ( 1 ) is disturbed 
by a term of  the form d[sl4s, the family of  hole solu- 
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tions (2) breaks down, and only stationary structures 
with v0 = 0 are retained. 

System (12) has two one-parametric families of 
solutions that are periodic along x, 

al ( x ) = Aa  eiQx+i~l , 

a2(x) = Aa e-iQx+i~, 

bl (~) = iQAae iQx+i~' , (13) 

b2 (()  = -iQAae -iax+i~, 

(14) 

where A = X/1 - 0 2 and ~Pi is an arbitrary constant. 
The system of equations (12) is conservative and 

reversible (in the sense that x and - x  are interchange- 
able, i.e., x => - x ) .  There exist two involutions, 

a : :~  - - a  

and 

(15) 

b ~ - b ,  (16) 

which map the phase flow of Eq. ( 11 ) into itself with 
the change x ~ - x .  Besides, the system (11) is in- 
variant under the transformation 

a ~ a e  i~, b ~ b e  i~, ~o0=const. (17) 

The validity of these last statements is readily verified 
by direct calculations. It is also easy to check that each 
of the above mentioned involutions maps the families 
of solutions (13) and (14) into each other. This fol- 
lows immediately from the statement that the phase 
flow is symmetric with respect to the plane a = 0 or 
b = 0, with the change x ~ - x  taken into account, 
and invariant to a simultaneous turn by an angle ~0 in 
the planes a = 0 and b = 0. 

Let us rewrite (12) for v0 = 0 in a slightly differ- 
ent form. Supposing a(x) = u(x)e i¢(x) and using the 
relation o~ = / 3 +  ( a  - / 3 ) Q 2  we find 

u'=v,  v'=u(Ip 2 -Q2)  + B(u 2_  A2)u, 

u~' = -2v¢  + C ( u  2 - A])u, (18) 

where ~p = d~o/dx, B = (1 + ot/3)/(l  + a2),  C = 
(/3 - a ) / (  1 + a 2 ) .  

Note that we do not demand the function u(x) to be 
positive. Consequently, the functions u(x) and ~o(x) 
coincide with the amplitude and phase, respectively, 
of the complex variable a(x) only if u(x) >~ O. For 
u(x) < 0, the variable ~o(x) differs from phase by rr. 

System (18) has a dimension smaller than that of 
( 11 ) but it contains a singularity in the plane u = O. 
The involutions 

u = ~ - u ,  ~ , = ~ - ~ ,  x = ~ - x ,  (19) 

v = ~ - v ,  ~b=~-cp, x = e - - x ,  (20) 

of system (18) correspond to involutions (15) and 
(16) of system ( 11 ). 

The fixed points 

PI ={u=Aa,  O=Q, v = 0 } ,  (21) 

P2 = {u = aa, ¢ = - Q ,  v = 0}, (22) 

of system (18) correspond to the periodic solutions 
(13) and ( 1 4 ) o f  system (11 ) fo r  ~'1 = ~o2 =0.  Note 
that the two other points, 

P1 = {u = -A~,, ~ = Q, v = 0}, (23) 

~z = {u = -A,, ,  ~O = - Q ,  v = 0}, (24) 

correspond to the same periodic solutions (13) and 
(14) but with ~01 = ~o2 ---- 7r .  T h u s ,  in passing from 
(11 ) to (18), a degeneracy appears due to the fact 
that the family of periodic solutions (13) ( (14) ) now 
only corresponds to the singular points P1 and Pl (/:'2 
and P2). 

The types of the singular points P1 and P2 were in- 
vestigated in Ref. [ 5 ]. Both these points are saddles, 
but P1 has a 1D unstable ~ and a 2D stable ~ man- 
ifolds, while P2 vice versa. The type of the singular 
point on 2D manifolds is determined by the parame- 
ters of the system. The spectrum of each singular point 
is purely real if 

D = B ~ -  ~ + 6  B~+12BI -8>O,  (25) 

and complex if D < 0, where B1 = B(Aa/Q) 2, Cl = 
C(Aa/Q) 2. Due to the symmetry of the phase flow 
of Eq. (18) with respect to u = ~, = 0 and v = 0 = 0 
(with x =~ - x ) ,  the singular points P1, P2 have a 
spectrum of eigenvalues coinciding with the spectrum 
of the points Pl and P2, respectively. 

Consider now in more detail the hole and shock so- 
lutions of Eq. (1). As mentioned above, a shock so- 
lution (9) connects two plane waves incident towards 
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each other from :t:ec. A structurally stable intersec- 
tion of the 2D stable ~ and 2D unstable ~ manifolds 
of the singular points P1 and P2 corresponds to this 
solution in the phase space of system (18) [5]. Struc- 
tural stability of the heteroclinic trajectory Fs connect- 
ing the equilibrium states P1 and Pz indicates that the 
shock is retained at arbitrary disturbance of the right- 
hand side of system (18), in particular, at arbitrary 
change of the parameters a,/3, and Q. The latter cir- 
cumstance demonstrates that, being a sink, the shock 
is a "nonself-sustained" structure; instead, it depends 
on the behaviour of the field at infinity. It is clear that 
in addition to Fs there exists one more heteroclinic 
trajectory Fs connecting the points Pl and P2. 

The situation is different for the solution (2) of 
Eq. ( 1 ). Investigation of the hole solution (2) for x 
4-0o verifies that a hole solution in the phase space of 
system (18) corresponds to a heteroclinic trajectory 
Fh (Fh) connecting the singular points PI and P2 
(P1 and P2). One of the trajectories belonging simul- 
taneously to the 2D stable and 2D unstable manifolds 
of the points (21) - (24)  cannot be such a trajectory 
because the hole solution is monotonic both for x ---, 
+oc and x ---, - o c  for any value of the parameters and 
contains a point at which the field amplitude vanishes. 
Thus, the only possibility is the intersection of 1D sta- 
ble and unstable manifolds of the equilibrium states 
Pl and P2 (PI and P2). In the general case, however, 
such an intersection is structurally unstable; moreover, 
it has co-dimension two in IR 3. The question is: why, 
in spite of this circumstance, do hole structures exist 
in a broad interval of the parameters a and/3? 

Proposition 1. The intersection of 1D manifolds 
and ~ ( ~  and ~ )  of the singular points P1 and P2 (Pl 
and P2), in the class of dynamical systems possessing 
the involutions (19), (20), has co-dimension 1. 

Proof Let the 1D separatrix ~ of the singular point 
Pl intersect the line ~ = u = 0 at the point a. Such an 
intersection is structurally unstable because it breaks 
down when the right-hand side of system (18) is per- 
turbed and has co-dimension 1. However, the line ~ = 
u = 0 is the involution axis; consequently, the sepa- 
ratrix ~ of the point P2 intersects the axis ~p = u = 
0 at the point a too. Thus, the heteroclinic trajectory 
connecting the points Pl and P2 has co-dimension 1. 
The same is true for the heteroclinic trajectory cor- 

responding to the intersection of the one-dimensional 
manifolds ~ and ~ of the singular points/'2 and P1, 
respectively. The proposition is proved. 

It was assumed above that the parameters o~,/3 and 
Q of system ( 11 ) (or (18) ) can change independent 
of each other. In this case, the intersection of the man- 
ifolds ~ and ~ ( 2  and ~ )  in the phase space of 
system (18) is really structurally unstable and disap- 
pears when the parameters are perturbed. However, 
the situation will change if it is assumed that only two 
parameters, e. g. ot and/3, are independent and that the 
value of Q depends on ot and/3. It is clear that the dy- 
namical systems possessing such a property will form 
a "film" of co-dimension 1. 

Proposition 2. For any value of the parameters oe 
and/3 giving the real solution Q (a , /3)  of the equation 

Q4(I - B -  ~C 2) + Q 2 ( B +  4C2) - ~C 2 = 0, (26) 

there exists a heteroclinic trajectory /'h (Fh) moving 
from the point P1 (P1) to the point P2 (P2) and lying 
in the plane L = {u,v,~p : ~P = (Q/Aa)u} (L = 
{u , v ,¢  : O = (Q/Aa)u}).  

Proof Let us consider the plane L which contains 
the points P1 and P2. One must note that the trajecto- 
ries which belong completely to the plane L have no 
singularity on the line u = ~ = 0 as l im,~0(¢ /u)  = 
const for any curve lying in the plane L and intersect- 
ing the axis u = ~O = 0. Obviously, the phase trajec- 
tory will belong completely to the plane L only if the 
derivative of the phase flow with respect to the nor- 
mal to the plane P equals zero at all points of this 
trajectory. The latter condition determines the curve 

CA 2 Q u}  C =  u,v,~p : v= ~--~(u - A a 2 ) , ~ p = ~ a  . 

(27) 

So, the phase flow of system (18) is tangent to the 
plane L at the points lying on the curve C. Now let us 
verify that the curve C is really the solution of system 
( 18 ) ( C is the phase trajectory). Direct substitution of 
(27) into (18) shows that the curve C is the solution 
of system (18) for all values of Q satisfying (26). 
The determinant of (26) is strictly positive and it is 
easy to check that the set of values a and fl giving 
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a real solution of Eq. (26) is not empty. Thus the 
proposition is proved. 

Note that the analytical expression for the hetero- 
clinic trajectory Fh (Eq. (27)) was obtained in the 
proof of the proposition. The hole solution of the ba- 
sic equation ( 1 ), first obtained in Ref. [ 1 ] by Hirota's 
bilinear method [6], corresponds to this trajectory. 

Thus, the symmetry of phase space and the depen- 
dence of the parameter Q on a and fl explain the fact 
that the heteroclinic trajectories corresponding to hole 
structures are retained at arbitrary values of a and fl 
inEq. (1).  

3. Multiloop trajectories 

We now consider the existence of multiloop hete- 
roclinic trajectories, i.e., the trajectories to which the 
solutions containing several hole and shock structures 
correspond. 

Definition. The heteroclinic trajectories belonging 
simultaneously to the 2D stable manifold of the fixed 
point PI (PI) and the 2D unstable manifold of the 
fixed point P2 (P2) and passing near the heteroclinic 
trajectory Fh (Fh) we will call double-loop trajecto- 
ries. 

According to this definition the solution containing 
two shocks and one hole lying between them corre- 
sponds to a double-loop trajectory. 

Proposition 3. Let there co-exist in the phase space 
of system (18) both types of heteroclinic trajectories 
considered above. The first of them corresponds to 
the intersections of 1D stable and unstable manifolds 
of the singular points Pl and /°2 (P2 and Pl),  and 
the second one to the intersections of 2D stable and 
unstable manifolds of the points Pl and P2 (P1 and 
P2). Then there exists a countable set of double-loop 
trajectories. 

Proof. Suppose that the fixed points (21) - (24)  are 
saddle-foci and PI has a two-dimensional stable and a 
one-dimensional unstable manifolds. Then there cor- 
responds to a shock solution a structurally stable hete- 
roclinic trajectory Fs along which the unstable ~ and 
stable ~ manifolds of the points PI and P2 intersect. 

By virtue of the phase space symmetry with respect 
to u = ~p = 0, an analogous intersection (trajectory 
- -  . ~ - - S  

Fs) occurs for the manifolds S 2 and S 2 of the singular 
points P1 and/'2. 

The simplest double-loop heteroclinic trajectory 
Tsh~ originates at the singular point P-22, moves along 
the unstable manifold S~ near the trajectory T~, en- 
ters the neighbourhood of the point P1, then passes 
along the curve Fh to the neighbourhood of the point 
P2, and, finally, moving along Fs it ends at the point 
PI. Clearly, there exists an additional double-loop 
t r a j ec to ry / ' shs  which connects the points ,°2 and Pl. 

Let us designate by Th a global map of a secant 
in the neighbourhood of the heteroclinic trajectory/'h 
and by To a local map in the neighbourhood of saddle- 
focus. 

Consider the singular point Pl. System (18) may 
be linearized in the neighbourhood of the saddle-focus 
and, by a coordinate transformation, it can be written 
as 

~=aT,  a > o ,  ~=to ,  

to > o, ~ = -~,  (28) 

where (~,~p,~) are the variables in the local cylin- 
drical reference frame in the neighbourhood of the 
point P--~. Consider the set R = { ( T , ~ , ~ )  : ~ C 
( 0 , T I ] , ~  = ~P0, P = P0} lying in the neighbourhood 
of the saddle-focus PI. We take the secant Z = Z = 
{T : z = T1 } and find the set T0R on it. 

From the first equation in system (28) we have ~ = 
TI = Te at, T C (0 ,Tl] .  Then 

to T I ,  
i n - -  ~ ) = ~ 0 + ~ -  ~- 

~1) = ~0(~-/~-1) l/a. (29) 

Apparently, Eqs. (29) describe the spiral connecting 
the points ~p = ~0, P = P0 and ~ = 0. 

Consider the cylindrical surface K = K = {T, ~, ~ : 
T E ( 0 , ~ l ] , ~  E [0,2~-),~ = P0) in the neighbour- 
hood of the singular point PI. The intersection of the 
two-dimensional manifold ~ of the singular point 
with the surface K occurs along the curve C originat- 
ing from the point T = 0, p = P0, ~P = ~0 on the trajec- 
tory Fs and is directed along K towards larger values 
of the variable T. 1 The curve C E K is topologically 

l We analyze the half-space ~ ~> 0. 
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equivalent to the section R E K. Consequently, its im- 
age on the secant Z is also a spiral moving to the point 
~ = 0 .  

Thus, the spiral G originating from the point ~ = 
{ ( T , ~ , p )  : T = z l , p  = 0} is the image of the 
element D (D f) Fs ~ 0) of the manifold ~ on the 
secant Z = {~" : z = z-l } in the neighbourhood of the 
point P2. 

Repeating the same procedure we can show that the 
spiral G originating from the point y = {(z, ¢p, p) : 
z = z l ,p  = 0} is the prototype of the element D 
(D A Fs 4= 0) of the manifold ~2 of the singular point 
Pl on the secant Z = {z : z =Zl} ,where  ( z , ~ , p )  

are the local coordinates in the neighbourhood of the 
saddle-focus P2. 

The global map Th transforms the point ~ to 7, and 

the spiral G to G( 1 ) with the center at the point % One 

can readily verify that the spirals G and G(J) rotate 
in opposite directions due to phase space symmetry. 
Consequently, they have a countable number of inter- 
sections. Each intersection corresponds to a double- 
loop heteroclinic trajectory connecting the points 
and Pj. Different double-loop heteroclinic trajectories 
correspond to the shock-hole-shock structures that 
are slightly different in shape. Thus, the proposition 
is proved. 

Note that the centers of the spirals G and G(l) do not 
coincide in the absence of the heteroclinic trajectory 
Fh. However, if the manifolds ~ and ~ of the singular 
points/'2, Pl are sufficiently close to each other, the 
spirals intersect, although the number of intersections 
is now finite rather than countable. 

It is clear that more complicated n-loop (n > 2) 
heteroclinic trajectories may exist too. The proof of 
this statement is more complicated than the proof of 
Proposition 3. However, such a proof may be given by 
analogy with that presented above. 

4. Nonstationary structures (vo #: 0) 

For v0 4: 0, the system of equations (11) is not 
reversible, like in the case v0 = 0. But the phase flow 
is also invariant to the transformation (17). 

We suppose, as before, that a(  x ) = u(  x )e  i~(x) and 

transform system ( 11 ) into the form 

U I = U ,  

v' = u 0 p  2 - Q~) + B ( u  2 - A21)u 

+ a v o D ( Q l  - ~ ) u  - voDv, 

rob' = -2v~p + C ( u  2 - A]I)U 

+ v o D ( Q l  - ¢ ) u  + avoDv,  (30) 

where ~p = d~o/dx, D = 1/( 1 + 0~2), and Aai = 

X/q- _ Q2. System (30) has the following fixed points, 

PI 1 = ( u = A l ,  ~O=QI, v = 0 ) ,  

P ~ = { u = A 2 ,  ,8,=Q2, c = 0 } ,  

P1 / = {u = - a l ,  ,g' = Q1, v = 0}, 

P ~ = { u = - A 2 ,  ~P=Q2, v = 0 } .  

(31) 

(32) 

(33) 

(34) 

Note that the asymptotic wave numbers QI and Q2 are 
related by Q2 + Ql = v o / ( a  - f l ) .  Consequently, for 
v0 -~ 0, the equilibrium states ( 31 ) - (34) transform to 
(21) - (24) .  The condition of invariance (17) reduces 
for system (30) to the condition of phase flow invari- 
ance under the transformations u ~ -u ,  v ~ -v .  

The stability of the singular points (31 ) -  (34) may 
be found directly from the analysis of the linearized 
system (30). However, by virtue of continuous de- 
pendence of the roots of algebraic equation on its co- 
efficients, we can state that the character and stability 
of the singular points (31) - (34)  and (21) - (24)  co- 
incide for sufficiently small v0. If there exists, for v0 = 
0, a structurally stable heteroclinic trajectory connect- 
ing the points Pl and P2 (Pl and ,02) then, for small 
enough v0, there exists a structurally stable hetero- 
clinic trajectory corresponding to the intersection of 
two-dimensional stable and unstable manifolds of the 
singular points P( and P~ (Pl ~ and P~). In terms of the 
initial equation ( 1 ) this corresponds to a shock solu- 
tion moving with constant velocity v0 along the x-axis. 
The intersection of one-dimensional stable and unsta- 
ble manifolds of the singular points P~ and P~ (P~ and 
P~) corresponds to hole solutions moving with con- 
stant velocity v0. It is noteworthy, however, that the 
problem of structural stability of the heteroclinic tra- 
jectories corresponding to moving holes is more com- 
plicated than in the case v0 = 0. The system of equa- 
tions (30) is not invariant under the involutions (19) 
and (20). Consequently, the given heteroclinic trajec- 
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tories should have co-dimension 1 even if the parame- 
ters Q] and Q2 depend in a certain way on a and/3. The 
existence of  these trajectories at arbitrary values of  a 
and/3, as was ascertained in the works of  Nozaki and 
Bekki [ 1 ], indicates that additional symmetries which 
are more complicated that those considered above are 
present in system (30).  Thus, the results of  Proposi- 
tion 3 about multiloop trajectories can be carried over 
to the case v0 4 : 0  only under the assumption of  the 
existence of  structurally stable heteroclinic trajectories 
connecting the singular points, supplemented by lo- 
cal analysis of  phase flow in the neighbourhood of  the 
saddle-focus. Such multiloop heteroclinic trajectories 
correspond to complex shock-hole-shock structures 
moving with constant velocity v0. 

5. Discussion 

The results presented in this paper indicate that 
Eq. ( 1 ) has solutions describing complex structures, 
both moving and at rest, consisting of  a sequence of  
holes and shocks. We would like to emphasize that 
we did not consider stability of  these solutions. It is 
a nontrivial problem even for the solutions describing 
isolated holes (see, e.g., Refs. [4,7] ). 

Still another important issue is related to structural 
stability of  the solutions of  interest at weak distur- 
bances in the right-hand side o f  system ( 1 ). This prob- 
lem was analysed in Ref. [3] in applications to the 
isolated holes. It was shown that the family of  holes 
disappears and only motionless structures are retained 
under perturbations of  the form dlslas, d << 1 (the 
most typical in terms of  the asymptotic theory). The 
fact that motionless structures are retained can also 
be explained in the context of  the analysis of  phase 
space structure presented above. Indeed, when the ad- 
ditional term dlslas is introduced into the right-hand 
side of  Eq. ( 1 ), system (12) retains the involutions 
(15) and (16).  Consequently, at appropriate choice 
of  the value of  Q, the heteroclinic trajectories corre- 
sponding to holes will exist in a broad region of  val- 
ues of  the parameters a and fl (at least for d << 1 ). 
Note that these trajectories will no longer lie in a two- 
dimensional plane in three-dimensional space. As to 
the moving holes, we can only make a supposition 
that the symmetries considered in the previous section 
vanish at d 4= 0. 

The same holds true for the solutions describing 
complex shock-hole-shock structures. The corre- 
sponding heteroclinic trajectories, that are structurally 
stable, exist at sufficiently small d ~ 0. It is signifi- 
cant that there may exist not only motionless but also 
moving structures of  this type. Indeed, when proving 
the existence of  the multiloop heteroclinic trajectories 
corresponding to these structures (Proposition 3) we 
showed that a finite (but not countable) number of  
such trajectories exists even when one-dimensional 
manifolds of  singular points do not intersect. These 
intersections disappear at d 4 : 0  and v0 4= 0. Whereas 
the intersection of  two-dimensional stable and un- 
stable manifolds is retained, as well as the structure 
of  phase space in the neighbourhood of  saddle-focus 
that was used in the proof of  Proposition 3. Hence, a 
countable number of  motionless and a finite number 
of  moving structures of  the shock-hole-shock type 
will exist for d 4= 0. 
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