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Oscillations of neural activity are ubiquitous in the brain and are
critical for normal cognitive function. In the visual system, repetitive
presentation of a stimulus results in the reduction of power elicited
in the gamma frequency band. However, this reduction does not
result in degradation of perception; on the contrary, perception is
improved by prior experience with the stimulus. To explain how
reduction of gamma frequency oscillations, observed in priming
experiments, can lead to improvement in behavior, we assume that
visual processing takes place in two distinct stages: representation
sharpening in the early visual areas and competitive interaction
among representations in the higher visual areas and the prefrontal
cortex. Here, we present a network model of spiking neurons that
demonstrates how stimulus repetition leads to a decrease in power
of the local field potential oscillations in the gamma frequency
range in the early layer and also improves network response by
reducing the latency to reach a decision in the higher area.
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Oscillations of neural activity are ubiquitous in the brain. There
is evidence that neuronal oscillations are involved in cognitive

functions (1–4). Recordings from cortical neurons suggest that
synchronized activity of cortical neurons underlies oscillatory local
field potentials (LFPs) in the cortex. Neurons encoding an atten-
ded object synchronize their spike times, which will distinguish
them from other active neurons that might represent a different
object (5). It has been observed in priming experiments that
repeated presentation of the same visual stimulus results in
reduction of the induced gamma activity (6). However, this
reduction does not result in impairment of perception; surprisingly,
perception is improved by prior experience with the object.
Priming is an unconscious form of memory that has been

observed in perceptual, semantic, and conceptual domains (7–10).
Although priming leads to more efficient processing of sensory
stimuli, the neural activity in the cortex decreases with stimulus
repetition. This was observed in single-cell recordings (11, 12) and
in electroencephalographic (EEG) (6) and functional MRI
experiments (13). This paradoxical improvement in behavior
accompanied by reduction of neural activity in priming experi-
ments was demonstrated to occur in a rate model (14) based on
the representation sharpening hypothesis (15, 16). In this model,
representation sharpening took place in the early visual areas and
neural suppression was attributable to reduced populations of
neurons representing the stimulus. This led to more selective
activation of neurons representing objects in higher visual areas,
thereby reducing ambiguity in visual perception.
Here, we used a spiking model to explore why gamma oscil-

lations decreased during representation sharpening. Gamma
activity is driven by synchronous neural activity representing a
stimulus; therefore, stimulus repetition in priming experiments
should lead to reduction of synchrony among neurons repre-
senting the stimulus, and thus to reductions of LFP oscillations
and gamma power in EEG experiments (6). Representation
sharpening could explain why reduction of oscillatory neural
activity does not impair perception. We adapted the two-layer

network architecture (Fig. 1A) of the rate model that previously
explained suppression of neural activity in priming experiments
(14) (Methods).

Results
Representation Sharpening. According to the representation
sharpening hypothesis, neurons responding weakly to a stimulus are
eliminated from the stimulus representation with repetition (15),
a process that results in a sparser representation. The eliminated
neurons, whose preferred features are farther from the feature
of the stimulus, are less important for identifying that specific
stimulus (17).
We previously showed in a rate-based model that neural

suppression in priming experiments can be attributable to rep-
resentation sharpening (14). This representation sharpening was
assumed to take place in the early areas of the visual processing.
Units in layer 1 (L1) of the rate model received external inputs
with different strengths, which resulted in these units having
different levels of activity (Fig. 1B). Hebbian learning (18)
weakened synaptic connections from more active to less active
units and strengthened connections in the opposite direction. As
a consequence, weakly active units received less recurrent exci-
tation, leading to a further decrease in the activity (Fig. 1B). In
contrast, the excitation level of strongly activated units further
increased. In this model, repetition of the stimulus eventually
silenced initially weakly responding units. This process led to a
smaller neural population representing the stimulus, consistent
with the representation sharpening hypothesis (15).
In the rate model, we also have shown how the representation

sharpening hypothesis could lead to improvement of perception
of visual stimuli. A presented stimulus might partially activate
representations of many objects in higher visual areas and in the
prefrontal cortex (PFC), and those representations could com-
pete with each other (14). Eventually, a representation of only
one object should survive the competition and suppress the
representations of other objects. We suggested that representa-
tion sharpening in the early visual areas led to more selective
activation of representations in the higher visual areas; this
facilitated competition between representations, and thereby
improved perception of the primed objects.

Decreased Gamma Oscillations with Priming. In EEG recordings,
the presentation of a previously unexperienced visual stimulus
induced oscillatory brain activity in the gamma frequency range
(6), and repeated presentation of the same visual stimulus
resulted in reduction of the gamma activity (Fig. 2A). Here, we
suggest that the reduction of gamma power following repeated
presentation of visual stimuli could be attributable to the same
neural mechanisms that underlie representation sharpening.

Author contributions: S.M., M.B., and T.J.S. designed research; S.M. and M.B. performed
research; and S.M., M.B., and T.J.S. wrote the paper.

The authors declare no conflict of interest.

*This Direct Submission article had a prearranged editor.
1To whom correspondence should be addressed. E-mail: terry@salk.edu.

5640–5645 | PNAS | March 23, 2010 | vol. 107 | no. 12 www.pnas.org/cgi/doi/10.1073/pnas.0907525107

mailto:terry@salk.edu
www.pnas.org/cgi/doi/10.1073/pnas.0907525107


In the spiking neuron model, we assume that gamma band
power reflects synchronized activity of cortical neurons repre-
senting a stimulus. An initial presentation of a stimulus resulted
in synchronized firing among neurons of all five populations (Fig.
2B). On the second presentation of the same stimulus, the syn-
chrony remained strong in populations P1 and P2 and weakened
in populations P3, P4, and P5. The LFP was measured as syn-
aptic currents to excitatory neurons. We observed that the
amplitude of the LFP oscillations decreased from the first pre-
sentation of the stimulus to the second presentation (Fig. 2C).
The LFP oscillations also lasted longer on the first stimulus
presentation than on the second presentation. We measured
power spectrum of the LFP oscillations and found that power of
gamma band activity also decreased from the first presentation
to the second presentation of a stimulus (Fig. 2D).
The difference in the neuronal synchronization during the first

and second stimulus presentations was attributable to a decrease
of synchronized firing among neurons in populations P3–P5.
This decrease of synchrony among neurons in populations P3–P5
was attributable to the synaptic plasticity that underlies re-
presentation sharpening.
In the spiking neuron model, neurons in different populations

had different average firing rates. Initially, this was attributable
to neurons in populations P1 and P2 receiving stronger external
inputs than neurons in populations P3, P4, and P5. The initial
weights of the recurrent connections were randomly chosen
(Fig. 3A). Higher firing rates of neurons in populations P1 and
P2 and the competitive Hebbian learning rule led to strength-
ening of connections to the neurons in populations P1 and P2
and weakening connections to the neurons in populations P3, P4,
and P5 (Fig. 3B). This resulted in the excitatory inputs to P1 and
P2 neurons increasing and the excitatory inputs to P3–P5 neu-
rons decreasing with stimulus presentation (Fig. 3C).

Synchrony among neurons, as observed in the model, was
generated by interaction between excitatory and inhibitory cells:
Excitatory cells drive activity of inhibitory cells, which, in turn,
synchronize excitatory cells (Fig. 3D). The balance between
excitation and inhibition in the network was crucial for such
synchrony to emerge (19–21). Synchrony among the excitatory
neurons occurred when inputs from the excitatory neurons to the
adjacent inhibitory neurons and the feedback inputs from the
inhibitory neurons to the excitatory neurons were sufficiently
strong. Weakening of the excitatory connections to neurons in
populations P3–P5 resulted in a decrease of firing rates in those
neurons. This triggered a homeostatic plasticity mechanism that
maintained a steady level of activity in neural populations (22).
According to the homeostatic learning rule, an increase or
decrease of the total excitatory drive to an excitatory neuron will
also lead to a proportional change of the inhibitory drive to that
neuron. So, when excitatory inputs to the neurons in populations
P3–P5 were reduced (Fig. 3C), the inhibitory interneurons, con-
trolling the activity of the excitatory neurons in those populations,
also weakened inhibitory inputs to those neurons (Fig. 3E).
Because some minimal activity of excitatory neurons is required to
establish synchrony by activating inhibitory interneurons (23),
weakening the excitatory inputs to neurons in populations P3–P5
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Fig. 1. (A) Network model consisted of five populations of spiking neurons
(P1–P5). Each population contained 100 excitatory and 25 inhibitory neu-
rons. Recurrent excitatory connections between excitatory neurons in dif-
ferent populations were adjustable. Inhibitory interneurons received fixed
excitatory connections from excitatory neurons from all five excitatory
populations and sent inhibitory projections onto the neurons of the same
population. A stimulus applied to the spiking neural network model led to
representation sharpening with repetition, as observed in the rate model.
After the first presentation, the strengths of connections between neurons
in populations P1 and P2 increased but those between the other populations
decreased (Lower Right). (B) Schematic illustration of representation sharp-
ening. Initial presentation of a stimulus activated a pattern of units in early
visual areas (Left). The units in the pattern were activated to varying
degrees. Darker filled circles indicate higher activity levels. After several
stimulus repetitions (Right), only the most active units continued to respond
and weakly responding units were eliminated from the representation of
the stimulus. Strengths of connections (indicated by thickness of lines con-
necting units) between strongly activated units were strengthened, and
connections to weakly active units were eliminated.
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Fig. 2. (A) Spectrogram of EEG signal in humans during repetition experi-
ments [adapted with permission from Gruber and Muller (6) (Copyright
2002, Elsevier)]. The power of the EEG signal in the gamma frequency band
(40–80 Hz) was stronger for the first presentation of the stimuli and
decreased during the second presentation of the stimuli. (B) Rastergram of
spike times of the excitatory neurons of P1–P5 populations. The first pre-
sentation of a stimulus started at 200 msec and terminated at 1,000 msec
(black bar beneath the rastergram). The second time, the stimulus was
presented at 1,200 msec and removed at 2,000 msec. Populations P1 and P2
received stronger external inputs than populations P3, P4, and P5. The first
presentation of the stimulus induced spike time synchrony among neurons
of all five populations; however, during the second presentation, the syn-
chrony decreased in populations P3–P5 compared with that in populations
P1 and P2. (C) LFP was measured as the total synaptic current to excitatory
neurons of all five populations. Amplitude of the LFP was higher during the
first presentation than during the second presentation. This was because all
five populations synchronized their spikes during the first presentation,
which resulted in high-amplitude LFP oscillations. During the second pre-
sentation, spike synchrony was observed mostly among neurons in pop-
ulations P1 and P2, which resulted in a lower amplitude LFP. (D) Spectrogram
of the LFP revealed a strong response in the gamma frequency range (30–40
Hz) during the first presentation, which weakened during the second pre-
sentation. Power was also found at the first harmonic at 60–70 Hz.
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resulted in the weaker inhibitory inputs that could not synchronize
the excitatory neurons in those populations.
In the model, the amplitude of the LFP oscillations, which

contributes to the power of gamma activity in the EEG recordings,
depends onboth the synchrony among respondingneurons and the
number of responding neurons. Reduction of the population size
of the responding neurons attributable to representation sharp-
eningwould therefore affect the amplitude of the LFPoscillations.
In the model, however, we observed that the synchrony among
neurons decreased earlier than the number of neurons repre-
senting stimuli changed. Thus, although both the number of the
responding neurons and the synchrony among them may, in prin-
ciple, contribute to the power of gamma activity, the reduction of

synchrony among excitatory neurons was the main factor affecting
the power of LFP oscillations in gamma frequency range.
The amplitude of the LFP oscillations also varied within each

stimulus presentation: It was higher at the stimulus onset and
then decreased toward stimulus termination. This variation of
the LFP amplitude during the stimulus was a result of the firing
rate adaptation in the excitatory neurons. Thus, different
underlying mechanisms were responsible for the changes of LFP
between the first and second presentations as well as within each
presentation of the stimulus.

Competitive Interactions Among Representations in Higher Visual
Areas. In the previous rate model, a stimulus applied to the
network activated representations of many different objects that
competed with each other in layer 2 (L2) of a two-layer network
(14). Because of a winner-take-all design of L2, a representation
of one object in L2 should survive among representations of
many competing objects. Representation sharpening in L1 led to
selective activation of representations in L2, which facilitated
competition between representations in L2, and thereby short-
ened reaction time of the network.
In the spiking network model, we also modeled L2 as a winner-

take-all network that consisted of two populations of excitatory
and inhibitory neurons, Q1 and Q2, representing two objects,
respectively (Fig. 1A). There were excitatory-excitatory, excita-
tory-inhibitory, and inhibitory-excitatory connections within each
population. There were also strong projections from the excita-
tory neurons of one population to the inhibitory neurons of the
other population. Excitatory neurons in population Q1 of L2
received inputs from neurons in populations P1, P2, P3, and P4 of
L1; excitatory neurons in population Q2 received inputs from
neurons in populations P2, P3, P4, and P5 of L1.
A stimulus applied to L1 neurons in the first and the second

presentations resulted in synchronized activity of L1 neurons
(Fig. 4A). Activity of these L1 neurons triggered a response of L2
neurons. Because of a winner-take-all design of L2, this led to
competition between populations Q1 and Q2 of L2, which
resulted in the Q1 population suppressing the Q2 population
during the first and second presentations of the stimulus (Fig.
4B). As in the rate model, stimulus repetition shortened reaction
time of the network. During the first presentation of the stim-
ulus, it took ≈400 msec for activity in population Q1 to suppress
population Q2 (from 200 to 600 msec), and during the second
presentation of the same stimulus, the suppression was faster and
took only about 200 msec (from 1,200 to 1,400 msec).

Winner-Take-All Network and Synchrony. The Q1 population, which
received inputs from populations P1–P4, had an advantage over
the Q2 population, receiving inputs from populations P2–P5,
because the activity of P1 and P2 neurons was higher than the
activity of neurons in populations P3–P5. Therefore, on average,
afferent synaptic currents to neurons in population Q1 were
higher than currents to neurons in population Q2 (Fig. 4C). The
difference between these two currents was slightly greater for the
second presentation of the stimulus, but the change in the inputs
was not as dramatic as the change in the reaction time—the time
required by one population to suppress the other population
(Fig. 4B). To explain this observation, we analyzed the difference
between input currents to the L2 populations (Fig. 4D).
The sharply rising inputs from synchronized L1 neurons tended

to synchronize spikes of L2 neurons. It was previously shown that
synchrony in a population of spiking neurons prevents competi-
tion and winner-take-all behavior (24). Therefore, synchronous
inputs to the L2 neurons effectively postponed the competition
between L2 populations. Although a population receiving a
strongermean current eventually suppressed the other population
(Fig. 4B), it occurred only when synchrony in driving inputs from
L1 decreased (Fig. 4D). During the second presentation of the
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Fig. 3. (A) Initial weights of excitatory connections between neurons in
populations P1–P5 were randomly chosen according to Gaussian distribution
with a mean of 0.15 and SD of 0.1. Different colors represent different exci-
tatory populations (P1–P5). (B) Distributions of the excitatory weights after
stimulus presentation. The distributions of the weights are shown at the end
of the first presentation of a stimulus (at time 1,000 msec). The distributions
were separated into two groups: Connections to more active neurons in
populations P1 and P2 increased (red and green, mean = 0.2), whereas con-
nections to less activeneurons inpopulations P3, P4, andP5decreased (mean=
0.1). Further presentations of the stimulus to the network did not qualitatively
change this separation. (C) Dynamics of the total excitatory synaptic currents
entering neurons in populations P1 (red) and P3 (blue) and low-pass-filtered
versions (black). The total current in population P2 neurons was similar to that
in population P1 neurons, and currents to P4 and P5 neurons were similar to
those in P3 neurons. During the first stimulus, the currents in populations P1
and P2 increasedwith time, whereas the currents in populations P3, P4, and P5
decreased and remained lower during the second presentation. (D) Schematic
diagramof connections amongexcitatory and inhibitory neurons that result in
synchronized activity. Excitatory neurons drive activity in the adjacent inhib-
itory neurons, which, in turn, synchronize spike initiation in the excitatory
neurons. (E) Dynamics of the total inhibitory synaptic currents into neurons in
populations P1 (red) and P3 (blue) and low-pass-filtered versions (black).
Currents in population P2 neurons were similar to those in population P1
neurons, andcurrents in P4andP5neuronswere similar to those in P3neurons.
Because of the homeostatic plasticity of the inhibitory connections, the cur-
rents to populations P3, P4, and P5 decreased with priming.
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stimulus, the synchrony in L1 decreased more rapidly (Fig. 4D),
thus accelerating competition in L2.
The temporal dynamics of the competition can be clearly

observed if the calcium concentration is taken as an indicator of
neural activity (Fig. 4E). When correlation between oscillatory

inputs to neurons in populations Q1 and Q2 was strong (Fig. 4D),
neural activity remained high in both populations of neurons (Fig.
4E). Once the correlation between inputs was decreased, the
winner-take-all nature of the network was observed, with one
population suppressing activity of the other.
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Fig. 4. (A) Rastergram of the excitatory neurons in populations P1–P5. The first presentation of the stimulus started at 200 msec and terminated at 1,000 msec
(black bar beneath the rastergram). The second presentation started at 1,200 msec and ended at 2,000 msec. As in Fig. 4, population P1 and P2 neurons received
stronger inputs than population P3, P4, and P5 neurons; during the first presentation of the stimulus, spike time synchrony occurred among neurons of all five
populations, and during the second presentation, synchrony was observed mainly among neurons in populations P1 and P2. (B) Rastergram of the excitatory
neurons in populations Q1 and Q2. Competition between population Q1 and Q2 neurons (attributable to strong reciprocal inhibitory connections) led to
population Q1 neurons suppressing the activity of population Q2 neurons. It took 400 msec (from 200 to 600 msec) for population Q1 neurons to suppress firing
on population Q2 neurons in the first presentation of the stimulus, but it only took 200 msec (from 1,200 to 1,400 msec) for the second presentation of the
stimulus. (C) Low-pass-filtered total synaptic currents to the excitatory neurons in population Q1 (red) and population Q2 (blue). On average, population Q1
neurons received stronger input than population Q2 neurons; however, amplitudes of the synaptic currents to both populations did not differ significantly during
the first and second presentations. (D) Unfiltered total synaptic currents in the excitatory neurons in populations Q1 (red) and Q2 (blue) showed differences
between the first and second presentations of the stimulus. Because the currents to the neurons in both populations originated from the synchronized neurons in
P1–P5 populations, the currents in population Q1 and Q2 neurons were correlated. However, the correlation between the currents was weaker and shorter for the
second presentation of the stimulus. (E) Temporal dynamics of the total calcium concentrations in population Q1 neurons (red) and population Q2 neurons (blue).
When correlation between oscillatory inputs to neurons in populations Q1 and Q2 is strong (from 200 to 600 msec), neural activity in populations Q1 and Q2
coexists. Once correlation in inputs decreases, the winner-take-all nature of the network is observed. For the second presentation of the stimulus, the duration of
strong correlation was much shorter (from 1,200 to 1,400 msec), which resulted in faster suppression of population Q2 neuron activity.

Moldakarimov et al. PNAS | March 23, 2010 | vol. 107 | no. 12 | 5643

N
EU

RO
SC

IE
N
CE



Discussion
Cortical oscillations accompany normal cognitive functioning (1–
5), and interfering with these oscillations could lead to cognitive
impairment (25). However, perception was improved during
priming experiments, in which the power of cortical EEG oscil-
lations to repetitive stimuli presentations was reduced (6). Here,
we studied the neural mechanisms behind such improvement.
In the spiking neuronal model, representation sharpening, pre-

viously explored in a rate model (14), was accompanied by a
decrease in the power of the LFP oscillations in the gamma fre-
quency range, as observed in priming experiments (6). The
reduction of gamma activity in the priming experiments (6) was
observed during induced gamma activity. The induced gamma
activity is an active phenomenon that depends on perception of the
presented stimuli. Evoked gamma activity is also present during
visual stimuli presentation and is a reaction of the underlying
recurrent networks to stimuli. In the model, we focused on the
neural mechanisms that might underlie changes in the induced
gamma activity with priming, because evoked gamma activity is not
necessary for perception and does not change with priming (26).
In the model, reduction of the LFP oscillations in the first

layer enhanced competition between populations of neurons in
the second layer, connected through inhibition in a winner-take-
all network. Neurons in these populations tended to synchronize
because of recurrent inhibitory connections within and between
populations, and synchrony among competing neural pop-
ulations could impair competition (24). Competition can be
facilitated by decreasing synchrony within L2 populations, such
that they behave more like rate units. We accomplished this by
adding slow NMDA currents to the excitatory synapses in the L2
neurons, consistent with the high expression levels of NMDA
receptors in prefrontal cortical areas involved in decision making
compared with sensory cortex (27). Competition in spiking
neural networks can also be enhanced by slow inhibitory GABAB
currents, which also decreases network synchrony (not imple-
mented in the model). Decreased synchrony does not always
facilitate competition in neural networks, and some degree of
synchrony can improve competition (28, 29). How synchrony
affects competition depends on many factors, such as the
architecture and dynamics of a neural system.
Recordings of gamma band EEG responses may contain

artifacts from eye movements (30), which could affect inter-
pretation of the EEG study of object familiarity (6). However, in
contrast to the broadband signal, ranging between 20 and 100
Hz, generated by the transient artifact (30), the EEG signal in
the priming study had a narrow distribution with a peak at 50–60
Hz (6). Thus, the EEG signal observed in the priming experi-
ments (6) matched the underlying neural activity better than that
of the artifact. Similarly, the 30–40-Hz signal in the spectrogram
from the model was based on many cycles of the LFP oscillations
and was not attributable to spectral analysis of short transient
activity. Nonetheless, this experiment should be repeated with
better control of the eye movements.
In an experiment, when presented visual stimuli were mean-

ingful and made sense to the subjects, there was a decrease of
EEG power, but the power increased with stimulus repetition for
meaningless stimuli, such as abstract drawings (31). One possible
explanation is that the subjects lacked existing neural assemblies
representing the meaningless drawings (31), and the observed
increase in EEG power could be a consequence of establishing
corresponding neural representations. In the model, presenting a
meaningless stimulus to a subject would correspond to recruiting
a network with weak recurrent connections. Once the lateral
recurrent connections are strengthened with subsequent pre-
sentations and the total synaptic weight saturates, the competi-
tion among synapses can begin.

Methods
Model. L1. L1 inourmodel describedprocesses takingplace in early visual areas
during priming. L1 consisted of five populations (P1–P5) of 100 excitatory and
25 inhibitory neurons in each population (Fig. 1A). We assumed that each L1
population responds differently to a particular feature of an object, with each
one having a particular degree of preference for that feature. In area V1, for
example, neurons in a column may respond to an oriented bar but how
strongly they respond depends on each neuron’s preferred orientation (32).

Hodgkin–Huxley equations with different parameters were applied to
model excitatory and inhibitory neurons in L1 (SI). The connections among
neurons were modeled as AMPA and GABA synapses (SI).

Excitatory neurons in each population were recurrently connected to exci-
tatory neurons in other populations. These recurrent excitatory connections
were adjustable and have been modified according to the Hebbian learning
rule (18) augmented by competition among outgoing connections: Strength-
ening of some connections led to weakening of other connections (SI).

For simplicity, recurrent excitatory connections within each population
were not included; they had relatively little impact on the network dynamics
when they were included in the simulations. Neurons in the same population
received random inputs with similar mean values; therefore, their average
firing rates were nearly the same.

The inhibitory neurons received fixed (nonadjustable) connections with
different weights from excitatory neurons of all populations and sent
modifiable inhibitory projections to the excitatory neurons of the same
population. These inhibitory connections were adjusted according to a
homeostatic learning rule (SI).

Inputs to L1 neurons applied in two subsequent trials ranged from 200 to
1,000 msec and from 1,200 to 2,000 msec. Inputs to populations P1 and P2
were stronger (had higher mean values) than inputs to populations P3–P5.

Theneuralresponsesinthemodeladaptedwithinafewhundredmilliseconds.
Therefore, ifa singlestimuluspresentationwas longerthantheadaptationtime,
repeatedpresentationsof the stimuluswithequal totalduration led toagreater
totaleffect.Thestimuluswasrepeatedlypresented inthemodelwitha200-msec
gap between the first and second presentations. This interval was necessary to
allow the adaptation currents to relax to their basal levels.
L2. L2 in the model described processes taking place in higher visual areas,
such as the inferotemporal cortex (IT) or PFC, during priming. IT and PFC areas
are important for object recognition (33). The architecture of the L2 network
of the model was chosen so that (i) each population represented a distinct
object and (ii) populations competed with each other, such that only one
population could be active at a time (winner-take-all). The winner-take-all
feature of L2 of the model predicts that neural representations in higher
visual areas or the PFC are more competitive compared with representations
in the earlier visual areas. Although we modeled this competition in L2 via
strong inhibitory connections among L2 neurons, there might be other
possible explanations of such competition.

L2 consisted of two populations (Q1 and Q2) of excitatory neurons (100
neurons in each population) and two populations of inhibitory neurons (25
neurons in each population) (Fig. 1A).

To model L2 neurons, we used Hodgkin–Huxley equations with the same
parameters as those used for L1 neurons, except the excitatory neurons
included NMDA receptors in addition to the AMPA receptors (SI). Inclusion
of NMDA currents in L2 neurons served to reduce synchronization among
the recurrently connected neurons within each excitatory population. It has
been previously shown that synchrony in a population of spiking neurons
prevents competition and winner-take-all behavior (24). Experimental evi-
dence supporting this assumption comes from a study (26) that reported
much higher expression of NMDA receptor subunit mRNAs in the PFC than in
other cortical areas, including the primary visual cortex of the human brain.

The excitatory neurons in each L2 population were recurrently connected
with neurons of the same population. Populations Q1 and Q2 competed with
each other via reciprocal inhibition, such that one population should win the
competition and suppress the other population.

Inhibitory neurons in each population received inputs from excitatory
neurons of the other population and, in turn, sent projections to the exci-
tatory neurons of the same population. The strengths of connections were
randomly chosen from a uniform distribution between 0 and 0.5.

Neurons in population Q1 received inputs from neurons in populations P1–
P4 of L1, and neurons in population Q2 received inputs from neurons in
populations P2–P5 of L1.
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