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Intrinsic and Circuit Properties Favor Coincidence Detection
for Decoding Oscillatory Input
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In the insect olfactory system the antennal lobe generates oscillatory synchronization of its output as a framework for coincidence
detection by its target, the mushroom body (MB). The intrinsic neurons of the MB (Kenyon cells, KCs) are thus a good model system in
which to investigate the functional relevance of oscillations and neural synchronization. We combine electrophysiological and modeling
approaches to examine how intrinsic and circuit properties might contribute to the preference of KCs for coincident input and how their
decoding of olfactory information is affected by the absence of oscillatory synchronization in their input. We show that voltage-
dependent subthreshold properties of KCs bring about a supralinear summation of their inputs, favoring responses to coincident EPSPs.
Abolishing oscillatory synchronization weakens the preference of KCs for coincident input and causes a large reduction in their odor
specificity. Finally, we find that a decoding strategy that is based on coincidence detection enhances both noise tolerance and input
discriminability by KCs.
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Introduction
In many sensory systems the mean firing rate of neurons contains
information about the stimulus (Adrian, 1926; Hubel and Wiesel,
1962; Britten et al., 1992). For this information to be “read,”
downstream neurons must integrate their inputs over time, in
effect averaging any temporal patterns occurring in time scales
shorter than their integration window. Neurons, however, could
act as coincidence detectors integrating their inputs over much
shorter time frames, therefore responding selectively to corre-
lated input (Abeles, 1982; Carr and Konishi, 1990; Softky and
Koch, 1993; Konig et al., 1996). In many different systems the
selectivity for coincident inputs has been linked to different in-
trinsic and circuit neuronal properties, including active dendritic
conductances (Margulis and Tang, 1998; Larkum et al., 1999;
Schiller and Schiller, 2001; Williams and Stuart, 2002; Ariav et al.,
2003), feedforward inhibition (Grothe and Sanes, 1994; Pouille
and Scanziani, 2001; Brand et al., 2002), and oscillatory activity
(Singer and Gray, 1995; Engel et al., 2001; Lucke and von der
Malsburg, 2004). In the locust olfactory system all of these prop-
erties act together, conveying coincidence detection attributes to
the decoders of olfactory information (Perez-Orive et al., 2002).
To understand better how information is decoded in this system,
we further explore its intrinsic and circuit properties both in

control conditions and after oscillatory synchronization has been
abolished.

Each locust antennal lobe (AL) has 830 excitatory projection
neurons (PNs) that synapse onto the dendrites of the intrinsic
cells of the ipsilateral mushroom body (MB), called Kenyon cells
(KCs) (Laurent and Naraghi, 1994; Leitch and Laurent, 1996).
Odor-evoked PN responses exhibit coherent 20 –30 Hz oscilla-
tions and slow modulations of firing rate that are odor- and PN-
specific (Laurent and Davidowitz, 1994; Laurent et al., 1996;
Wehr and Laurent, 1996). Information contained in the oscilla-
tory synchronization of PNs has been shown to be functionally
and behaviorally relevant (Stopfer et al., 1997; MacLeod et al.,
1998). This odor representation becomes drastically sparsened in
the MB (Perez-Orive et al., 2002), a brain area involved in the
formation, retrieval, and extinction of olfactory memories
(Heisenberg et al., 1985; McGuire et al., 2001; Schwaerzel et al.,
2002; Heisenberg, 2003).

Previous intracellular recordings of KCs have indicated that
these cells can generate sharp spikelets suggestive of active con-
ductances that could summate coincident input supralinearly
(Laurent and Naraghi, 1994; Perez-Orive et al., 2002). By using
both intracellular recordings and computer simulations, we
wanted to explore further these intrinsic properties and their
potential role in the detection of coincident inputs. To examine
circuit behavior, we developed a network model that takes into
account KC intrinsic and circuit properties and is capable of re-
producing the olfactory representation observed experimentally
in the MB (Perez-Orive et al., 2002). We used this MB model to
gain insight into the possible advantages of a decoding system
that is based on coincidence detection. To test the role of oscilla-
tory synchronization in the decoding of olfactory information,
we abolished AL oscillations pharmacologically and used exper-
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iments and models to understand the effect of disrupted AL tem-
poral dynamics on KC odor tuning.

Materials and Methods
Experimental preparation and stimuli. Electrophysiological experiments
were conducted on locusts (Schistocerca americana) from an established,
crowded colony. Young adults of either sex were immobilized, with one
antenna left intact for olfactory stimulation. The brain was exposed,
desheathed, and superfused with locust saline, as described previously
(Laurent and Naraghi, 1994). Odors were delivered by injection of a
controlled volume of odorized air within a constant stream of desiccated
air. Teflon tubing was used at and downstream from the mixing point to
prevent odor lingering and cross-contamination. Several compounds
commonly associated in nature with green plants were used as odor
stimuli. The complete set of odors that were used included the following:
1-hexen-3-ol, trans-2-hexen-1-ol, cis-3-hexen-1-ol, 1-hexanol, 1-heptanol,
1-octanol, hexanal, octanal, nonanal, 3,7-dimethyl-2,6-octadiene-nitrile,
3-pentanone, 2-heptanone, 3-heptanone, 5-nonanone, 6-undecanone
(Sigma, St. Louis, MO), cherry, mint, and geraniol (LorAnn Oils, Lansing,
MI). Odors were used at 10% vapor pressure (90% of KCs) or 100%
vapor pressure (10% of KCs), further diluted (�1:10) in the desiccated
air stream. Electrical stimulation of PN axons was performed in the AL,
using 25 �m tungsten wire bipolar electrodes and a WPI A360 stimulus
isolator (World Precision Instruments, Sarasota, FL) at 300 �sec pulses;
typical stimulus amplitudes were 20 –100 �A.

Electrophysiology. Intracellular sharp electrode recordings of KCs (see
Fig. 1) were made with borosilicate glass micropipettes (World Precision
Instruments) filled with 0.2 M K-acetate (DC resistance �200 M�). KC
input resistance at the soma was usually �1 G�. Signals were recorded
with an Axoclamp 2B (Axon Instruments, Union City, CA) and acquired
(10 kHz, 12 bits) with a PCI-MIO-16E-4 data acquisition board and
LabVIEW software (National Instruments, Austin, TX). For extracellular
recordings (see Figs. 4, 5, 8) wire tetrodes were constructed with 0.0005
and 0.0004 inch (12.7 and 10.2 �m, respectively) insulated nichrome
wire (REDIOHM wire with PAC insulation; Kanthal Palm Coast, Palm
Coast, FL). Four strands of wire were twisted together and heated to
partially melt the insulation. The tip was cut with fine scissors, and each
channel tip was electroplated with gold solution (SIFCO, Cleveland, OH)
to reduce the impedance to between 200 and 350 k� at 1 kHz. Tetrode
recordings were made with custom-built 16-channel preamplifiers (uni-
tary gain) and amplifiers (10,000�). Data from each tetrode were filtered
(in custom-built amplifiers, bandpass 300 – 6000 Hz), acquired continu-
ously (15 kHz/channel, 12 bits), and stored. Electrodes (either sharp glass
or 1–3 simultaneous tetrodes) were placed within the MB soma layer,
dorsal to the neuropils, at depths �200 �m. Cell identification was un-
ambiguous because all of the somata located in the layer above the MB
calyx belong to KCs. Local field potentials (LFPs) were recorded in the
MB calyx, using wire tetrodes (bandpass-filtered 1– 6000 or 3– 6000 Hz).

Picrotoxin microinjections. Patch pipettes were backfilled with a solu-
tion containing 5 mM picrotoxin (PCT) and 0.3% fast green (Sigma). The
pipette was introduced into the AL, and a pneumatic picopump (World
Precision Instruments) was used to apply a series of three or four 100
msec, 10 psi pressure pulses. Each pulse injected �1 pl of solution (as
measured by previous injection into a drop of oil). Injected solution
remained localized exclusively to the AL, as verified by dispersal of the
fast green.

Analysis of experimental data. Data were analyzed with MatLab (Math-
Works, Natick, MA) and IgorPro (WaveMetrics, Lake Oswego, OR).
Single unit activity was obtained from extracellular data by using a mod-
ified expectation maximization algorithm and an empirically character-
ized noise model (Pouzat et al., 2002), which allowed us to perform
several statistical tests so as to select only well isolated units meeting
rigorous quantitative criteria (Pouzat et al., 2002). A KC was classified as
responding (e.g., in Fig. 4) if its firing behavior during a 3 sec window
starting at odor onset met two independent criteria of response ampli-
tude and reliability (Perez-Orive et al., 2002). The amplitude criterion
was satisfied in a given trial if at least one 200 msec bin had a firing rate
that exceeded by 3 SDs the mean baseline rate. Baseline rate was mea-
sured for each cell– odor pair over a period of 3 sec preceding stimulus

onset over all trials with that odor. To ensure that detected responses
were reliable even at low firing rates, the reliability criterion required that
the amplitude criterion be satisfied in more than one-half of all trials with
each odor. Several variations of this response definition were tested and
yielded nearly identical results (Perez-Orive et al., 2002). Phases of KC
spikes with respect to LFP oscillations were measured by linearly inter-
polating the time between the maximum (0 or 360°) and minimum
(180°) of the bandpass-filtered (15– 45 Hz) LFP.

Computational model: intrinsic currents. KCs and lateral horn inter-
neurons (LHIs) (Perez-Orive et al., 2002) were modeled as a single com-
partment with channels governed by Hodgkin–Huxley kinetics as fol-
lows: CmdV/dt � gL(V � EL) � I int � I syn, where Cm is the membrane
capacitance, gL is the leakage conductance, EL is the leak reversal poten-
tial, V is the membrane potential, I int is the sum of active intrinsic cur-
rents, and I syn is the sum of synaptic currents. The KC model included
a transient Ca2� current, ICa (Laurent et al., 1993), a Ca2�-dependent K�

current, IK(Ca) (Sloper and Powell, 1979), and a transient (A-type) K� cur-
rent, IK,A (Grunewald, 2003); fast Na �, INa, and delayed rectified K �, IK,
currents were included to account for spike generation (Traub, 1982).
Current kinetics were adjusted to 23°C. The LHI model included only INa

and IK. The intrinsic currents were described as follows: I int
j � gj

m Mh N(V � Ej), where gj is the maximal conductance for current j, Ej is its
reversal potential, and m(t) and h(t) are activation and inactivation vari-
ables. In most of the simulations the maximal conductances and passive
properties were Cm � 2.9�10 – 4 �F, gL � 2.9�10 –3 �S, EL � – 65 mV, gKL

� 1.16�10 –3 �S (K � component of the leak current), gNa � 26.1 �S, gK �
2.9 �S, gCa � 0.029 �S, gK(Ca) � 0.29 �S, and gK,A � 0.0145 �S for KCs;
Cm � 1.43�10 – 4 �F, gL � 7.15�10 –3 �S, gKL � 7.15�10 – 4 �S, gNa � 14.3
�S, and gK � 1.43 �S for LHIs. EL values for LHIs were taken from a
random distribution with 10 mV variability (EL � –70 	 5 mV), which
led to variability in resting membrane potential across them. Many of the
maximal conductances indicated above were varied systematically in our
study to find the limits of observed phenomena.

The ICa current used for KCs had M � 2, N � 1, m
 � 1/(1 � exp(–(V
� 40)/10.0)), �m � 0, h
 � 1/(1 � exp((V � 50)/4)), �h � [30.8 � (211.4
� exp((V � 115.2)/5))/(1 � exp((V � 86)/3.2))]/18. The IK,A current
used for KCs had M � 1, N � 0, m
 � 1/(1 � exp(–(V � 60)/1)), �m �
[1/(exp((V � 35.82)/19.69) � exp(–(V � 79.69)/12.7)) � 0.37]/3.74.
The IK(Ca) current used for KCs had M � 2, N � 0, m
 � 3333[Ca] 2/
(3333[Ca] 2 � 1), �m � 0. INa and IK were modeled as by Traub (1982).
For all cells ENa � 50 mV, EK � –95 mV, ECa � 12.8 log([Ca]O/[Ca]), and
[Ca]O � 2 mM. For KCs the intracellular Ca 2� dynamics were described
by a simple first-order model as follows: d[Ca]/dt � �A ICa � ([Ca] �
[Ca]
)/�, where [Ca]
 � 2.4�10 – 4 mM is the equilibrium intracellular
Ca 2� concentration, A � 1.7862 mM/(msec��A), and � � 100 msec.

Computational model: synaptic currents. All synaptic currents were cal-
culated according to I syn � g syn [O] (V � E syn), where g syn is the maxi-
mal conductance, [O](t) is the fraction of open channels, and E syn is the
reversal potential. E syn

nACh � 0 mV for nicotinic receptors; E syn
GABA-A

� –74 mV for GABAA receptors. Synaptic currents were modeled by
first-order activation schemes (Destexhe et al., 1994) as follows: d[O]/
dt � �(1 � [O])[T] � �[O], where [T] represents the concentration of
transmitter (Bazhenov et al., 2001a). The rate constants, � and �, were
� � 10 msec�1 and � � 0.12 msec�1 for GABAA synapses and � � 0.94
msec�1 and � � 0.18 msec�1 for cholinergic synapses. The maximal
conductances were gnACh(KC) � 0.044 �S for AL afferents into KCs,
gnACh(LHI) � 0.0044 �S for AL afferents into LHIs, and gGABA-A � 0.05
�S for synapses from LHIs to KCs.

Network geometry and stimulation. The MB model consisted of popu-
lations of 20 KCs and 20 LHIs. Each KC received 20 inputs from the AL,
with an overlap of 10 inputs between neighboring KCs (see Fig. 3A). Thus
a total of 210 afferents from the AL (PNs) were modeled. Each LHI
received the sum of all AL afferents. Random time delays (mean � 15
msec; SD � 7 msec) were introduced to the LHI inputs to provide a
response delay and some variability across LHI firing (Perez-Orive et al.,
2002). GABAergic synapses from all 20 LHIs projected then to each KC.
Each “odor” stimulus was represented by an input vector characterized
by a unique spatiotemporal pattern of activity across the 210 PNs. Typi-
cally, approximately one-half of the PNs were active at each instant of a
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given odor presentation. Additionally, �50% of the active PNs were
synchronized with each other, producing 20 Hz oscillations in the pop-
ulation average (representing the LFP). The identities of the active PNs
changed slowly over the stimulus duration to model the slow temporal
structure of PN responses. Similarly, the identities of the PNs that were
synchronized at each oscillation cycle varied to model transient spike
synchronization. More specifically, we assumed that �50% of all PNs are
active at the first cycle of odor-induced oscillations. Any active PN then
could become silent at the next cycle and vice versa. However, to main-
tain a realistic correlation between PN activity patterns in successive
cycles (Stopfer et al., 2003), we assigned a higher probability ( p � 0.6) for

PNs to stay in their current activation state. This
created a temporal structure with excitatory
and inhibitory epochs lasting on average 150 –
200 msec, consistent with experimental find-
ings (Laurent et al., 1996; Stopfer et al., 2003)
and our previous results of AL modeling (Ba-
zhenov et al., 2001b).

The specific spike timing of active PNs at dif-
ferent trials was calculated from Gaussian dis-
tributions for which the SDs, �, were a function
of PN and cycle numbers. Narrow distributions
(small �) characterized PN spikes locked to the
same phase of the LFP oscillation across trials.
Wide distributions characterized nonsynchro-
nized spikes (for a given PN and time during the
response). For a given neuron � changed from
one oscillation cycle to the next to model tran-
sient patterns of spike synchronization (Wehr
and Laurent, 1996). To avoid abrupt transitions
between synchronous and asynchronous states,
we gave higher probabilities for PN spikes to
maintain their assigned � from one cycle to the
next. In this way �50% of all active neurons
were synchronized at each oscillation cycle. Fi-
nally, to simulate multiple trials with the same
odor, we included small variations (from one
trial to another) in the identities and synchro-
nization patterns of active PNs. Random low-
frequency spiking (4 	 2 Hz) was modeled to
simulate baseline AL activity between odor pre-
sentations. “Different” odors were modeled by
completely different spatiotemporal patterns of
PN activation, whereas “similar” odors were
represented by inputs having the same slow
temporal structure (the same PNs were active at
each cycle of oscillations) but different patterns of
synchronization (i.e., although the same PNs were
activated at a given cycle, the identities of those
that were synchronized to the LFP were different).
This choice of similar versus different odors was
motivated by experiments showing that PCT ap-
plication to the locust AL eliminated PN oscilla-
tory synchronization while preserving the slow
temporal structure of PN firing (MacLeod and
Laurent, 1996; MacLeod et al., 1998) and showing
that this intervention disrupts the behavioral abil-
ity of the animal to discriminate among odors be-
longing to the same chemical group (“similar”
odors) but preserves the ability to discriminate
among chemically different odors (Stopfer et al.,
1997). To model the effect of PCT application to
the AL, we eliminated oscillatory synchrony
across PNs and increased the probability of PN
firing at odor onset so that the simulated LFP dis-
played the early low-frequency peak observed ex-
perimentally and predicted by a full AL model
when fast inhibition is blocked (Bazhenov et al.,
2001b). To accomplish this, we assumed that
within the first 50 msec of odor presentation each

PN can produce up to four spikes (vs 1 spike in control conditions) with a
probability P � P0 � 0.6(1 � P0), where P0 is the probability of spiking in
control conditions. To maintain a similar number of total PN spikes during
the complete odor presentation, we reduced the probability of spiking dur-
ing the rest of the stimulus (after the first 50 msec) to p � 0.5P0.

Results
KC subthreshold properties (experiments)
We performed intracellular recordings on KC somata in vivo to
study their subthreshold responses to PN input. Monosynaptic

Figure 1. Subthreshold nonlinearities in KCs observed with intracellular recordings from KC somata in vivo. A, Influence on KC
EPSP shape of increasing SA to PNs. Shown are examples for three different KCs. Increasing SA causes appearance of spikelet with
distinct change in the waveform of the EPSPs (top traces). Calibration: 50 msec, 5 mV. Stimulus artifacts of different sizes (caused
by different SAs that varied across experiments because of slight differences in the placement of the stimulating electrode within
the AL) can be observed before the EPSPs in all raw data traces. B, Shape metric capturing transition in EPSP waveform by
measuring rate of voltage change. Inset, Voltage trace (top) and its time derivative, Vdot (bottom). Calibration: 30 msec, 3 mV; 3
mV/msec. The shape metric, �Vdot, is defined as the maximal difference in Vdot. Main plot, �Vdot as a function of SA (always
below action potential threshold) for KC1 from A. Gray arrow indicates abrupt nonlinear transition in shape metric as spikelet
occurs. Smaller black arrow indicates smaller change in EPSP waveform that can be observed in the middle traces in A. C, Nonlinear
behavior in KC EPSPs. Shape metric (mean 	 SEM) was measured for 17 KCs. Because each KC had a different SA sensitivity
(because of positioning of PN stimulating electrode), SAs are normalized (arbitrary units, AU) at two points; SA � 3 is 100% of the
SA before action potential threshold, and SA � 2 is 79 	 8% (mean 	 SD) of this maximum at which the largest stepwise increase in
�Vdot occurred in each series. Inset, Histogram showing the point in which this largest stepwise increase occurred for all 17 KCs; the
nonlinearity (SA � 2) occurs within a limited range of SA percentage values throughout the population of recorded KCs. D, Influence of
holding current on EPSP shape. Shown are examples for three different KCs. EPSPs for each KC are evoked by the same SA. Spikelets appear
in a voltage-dependent manner at more depolarized potentials (top traces). Calibration: 50 msec, 5 mV.
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EPSPs were evoked in the KCs by applying single-pulse electrical
stimulation to the AL, the PNs of which send axons to the MB
calyx, where they make direct excitatory connections with KC
dendrites (Leitch and Laurent, 1996; Hansson and Anton, 2000).
Because more PNs were recruited by increasing the electrical
stimulus amplitude (SA), the EPSPs recorded from a KC in-
creased in amplitude, indicating that several PNs converge on
individual KCs. Eventually, an action potential was evoked (data
not shown). Very often, particularly if the KC was held slightly
hyperpolarized by DC current injection, we observed sharp
“spikelets” with a SA threshold smaller than that required to
evoke a full-blown action potential (Fig. 1A).

To characterize this property across all recorded KCs, we used
a metric of postsynaptic potential shape, �Vdot, that can be
thought of as quantifying its “sharpness,” taking into account
both rising and falling phases of an EPSP (Fig. 1B). When EPSPs
are slow, �Vdot will be small, regardless of EPSP amplitude.
�Vdot increases as the EPSP rises or decays faster. �Vdot for a KC
recorded with a series of increasing SAs is shown in Figure 1B. As
the kinetics of the EPSP begin to change, �Vdot increases slightly
(Fig. 1A, middle traces, 1B, smaller black arrow) until an abrupt
nonlinearity occurs (gray arrow). At this SA the cell receives
enough PN inputs to generate a spikelet. This nonlinear sub-
spike threshold behavior appears consistently across the popula-
tion of intracellularly recorded KCs (Fig. 1C). The value of SA at
which this nonlinearity occurs (expressed as a percentage of the
maximum SA before action potential generation) lies within a
relatively narrow range (Fig. 1C, inset). Spikelets also could be
elicited by holding the KC at more depolarized potentials while
applying a constant SA, recruiting a fixed number of PNs (Fig.
1D). This supports the idea that the nonlinear behavior is attrib-
utable to the recruitment of voltage-dependent conductances by
depolarization.

Single KC and network models
We explored the functional significance of this coincidence de-
tection behavior in a simplified model of a KC with realistic “ac-
tive” conductances (see Materials and Methods) tuned to repli-
cate the EPSP waveforms recorded in vivo (Fig. 2A). At small
stimulus amplitudes the EPSPs were not sufficient to depolarize
the membrane potential to potentials in which the Ca 2� current
could be activated; only passive responses were exposed. When
the EPSP amplitude was increased twofold, ICa activation, fol-
lowed by IK,A and IK(Ca), sharpened the EPSP (activation of the
calcium current increased the speed of depolarization, the potas-
sium currents ensured fast repolarization). The sharp “peak”
riding on the otherwise smooth EPSP became more obvious at
larger stimulus amplitudes. At a stimulation amplitude just be-
low Na� action potential threshold, the EPSP contained a sharp
spikelet for which the return to baseline was accelerated and for
which the half-width was similar to those observed in vivo (Fig. 1)
(Perez-Orive et al., 2002). Besides sharpening the EPSP, the in-
teraction between active depolarizing and hyperpolarizing con-
ductances increased the firing threshold and reduced the delay
between EPSP onset and spike.

If we assume that several EPSPs of similar amplitudes occur
independently on the dendrites of a KC, then jitter in the arrival
times of the presynaptic spikes may determine critically whether
or not the KC will reach threshold. Figure 2, B and C, illustrates
the responses of two different KC models: one with active prop-
erties as described above (control) and the other without any
active conductances other than INa and IK. A train of 14 spikes was
delivered to each model, with arrival times taken from a Gaussian

distribution with SD �. The synaptic weights from the PNs to the
KCs were adjusted so that the same minimal number of coinci-
dent EPSPs (with � � 0 msec) was necessary to trigger a KC spike
(reducing them by 37% in the model without active conduc-
tances). Thus both models displayed a Na� spike when all input
spikes were synchronized (� � 0 msec). As the jitter of spike
arrival times increased (Fig. 2B), the model with the complete set
of active conductances failed to generate a spike starting at � �12
msec, whereas the reduced model showed reliable spiking up to �
�35 msec. For the reduced model the window of integration was
determined solely by the membrane time constant and was much
larger than in the complete model, which was more sensitive to
coincident inputs.

The KC units were used to construct a network model consist-
ing of 20 KCs receiving excitatory input from 210 PNs and feed-
forward inhibition from 20 LHIs (Fig. 3A). The PN activity of the
model (Fig. 3B) (see Materials and Methods) includes dynamic
ensembles of synchronized neurons replicating the behavior of
PNs recorded in vivo (Laurent et al., 1996; Wehr and Laurent,
1996; Perez-Orive et al., 2002) as well as of PNs in a complete AL
model (Bazhenov et al., 2001a,b). Figure 3C shows the responses
of the KCs to four different “odors,” each represented by a unique
input PN pattern. For each stimulus one to four KCs responded
reliably with a Na� spike on most trials despite small variations in
the inputs (in spike number and timing) from one trial to the
next. Different KCs spiked at different times (e.g., compare re-
sponses of KC6 and KC10 to odor 1), depending on the timing of
transient correlations between their respective PN inputs

Figure 2. Effect of modeled intrinsic conductances on KC responsiveness. A, Nonlinear re-
sponse properties of the KC. The maximum synaptic conductance, g syn, was increased in integer
multiples of the lowest value when only a passive response was found (black line with smallest
peak), until a Na � spike was generated (clipped gray line). For clarity, black and gray lines are
alternated as synaptic conductance is increased. Calibration: 100 msec, 10 mV. B, A train of 14
spikes was delivered through the cholinergic synapse to two different versions of a single KC
model. To examine the effect of “active” intrinsic conductances on the temporal window of
integration of the KC, we took different spike arrival times of the PN inputs from Gaussian
distributions with different SDs, �. For the complete model, which included active conduc-
tances (see Materials and Methods), the firing probability falls rapidly as � increases, whereas
in the reduced model, including only INa and IK , the firing probability remains high for much
larger values of �. C, Responses of the complete (left) and reduced (right) KC models to similar
inputs as described in B. In the reduced model an input spike train with temporal jitter � � 25
msec elicits a spike from the KC, whereas in the complete model it does not. Calibration: 50
msec, 25 mV.
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(Stopfer et al., 2003). In the majority of cases the KCs were silent
or fired only very few action potentials, which occurred when a
few input spikes coincided. In this model the KC responses de-
pended both on their intrinsic properties (active conductances)
and on a feedforward inhibitory circuit (Perez-Orive et al., 2002),
the effect of which was to reduce the integration window of KCs.
When LHI-mediated feedforward inhibition was removed, many
KCs responded with one to three spikes for each odor (Fig. 3D),
consistent with experimental findings (Perez-Orive et al., 2002).
These results indicate that a network of KCs with a simple set of

active conductances and realistic circuit
connectivity can respond with high speci-
ficity to different inputs, decoding the cor-
relation structure contained in the input
spike trains.

Odor responses of KCs with disrupted
AL dynamics (experiments)
To test the effect of AL dynamics on KC
tuning, we performed in vivo experiments
in which PCT, a chloride channel blocker,
was injected into the AL. Extracellular sin-
gle unit tetrode recordings of KCs were
made before and after PCT treatment.
Blocking of fast GABA-mediated inhibi-
tion in the AL has been shown to abolish
PN oscillatory synchronization without
significantly affecting mean PN firing rate
or slow response patterning (on a time
scale of hundreds of milliseconds) (Ma-
cLeod and Laurent, 1996; MacLeod et al.,
1998).

We tested KCs with a panel of odors
(on average, 12 odors per cell; range for
each cell, 5–17; 10 trials with 1 sec odor
pulses; 20 sec interstimulus interval; n �
16 KCs) before and immediately after PCT
injection into the AL. Figure 4A shows
representative examples of two cells and
five odors. Although neither cell showed a
strong odor response in the control condi-
tion, both cells responded consistently to
many odors after PCT treatment. Al-
though most KCs responded to zero or
one odor in control conditions (as in
Perez-Orive et al., 2002), disrupting AL os-
cillatory dynamics with PCT in the AL in-
creased the probability of odor response of
KCs (median probability of response for
control, 0.00; PCT, 0.42) (Fig. 4B). Re-
sponse intensity, however (measured as
the number of spikes produced during an
odor response), did not increase signifi-
cantly with PCT treatment (Fig. 4C). Be-
cause we observed few odor responses in
control condition in the cells recorded
both before and after PCT (n � 16 KCs),
this comparison includes additional KCs
that were recorded in only one of the two
conditions (control, n � 53 KCs with re-
sponses; PCT, n � 17 KCs with responses).

Given that KCs appear to act as coinci-
dence detectors, this result is counterintui-

tive, for it suggests that KCs fire more easily if their input is
desynchronized. It can be explained, however, by considering the
change in the instantaneous firing properties of PNs induced by
PCT and the contribution of LHIs to KC firing. The intrinsic and
circuit properties of KCs confer on them a preference for coinci-
dent input (Figs. 1–3) (Perez-Orive et al., 2002). Under control
conditions this input arises in the form of periodic waves of ex-
citation (from PNs) interspersed with periodic waves of inhibi-
tion (from LHIs). The LFP recorded in the MB reflects the overall
influence of the PN population onto KCs. LFPs recorded during

Figure 3. Odor specificity of KC responses in network model. A, Network model geometry. Each KC received 20 PN inputs from
the AL; inputs were partially shared with neighboring KCs in the network (numbers indicate input PN indices). A network of 20
LHIs, each cell receiving all 210 inputs from the AL and contacting all 20 KCs, provided feedforward inhibition to the KCs (see
Materials and Methods). B, Firing patterns of 20 representative PNs are shown for two different odors. Each box represents activity
for one PN. Each stimulus (horizontal bars, 1 sec) was presented 20 times and included small variations between trials. Approxi-
mately one-half of the inputs were synchronized at each oscillation cycle, and identities of the synchronized inputs changed slowly
over the stimulus duration (see Materials and Methods). C, KC responses to four different stimuli (horizontal bars, 1 sec). Each box
represents one KC with 20 trials. Twenty cells are shown for each odor. Two to four KCs fired reliably in response to each stimulus.
D, Removing LHI-mediated inhibitory input significantly reduced KC odor specificity. More than one-half of the KCs in the network
responded reliably for each stimulus (20 trials; horizontal bars, 1 sec).
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odor responses exhibit prominent 20 –30
Hz oscillations reflecting the oscillatory
synchronization of PN ensembles (Fig.
5A) (Laurent and Davidowitz, 1994; Lau-
rent and Naraghi, 1994; MacLeod and
Laurent, 1996). Disruption of AL dynam-
ics with PCT abolishes this oscillatory syn-
chronization (MacLeod and Laurent,
1996; Stopfer et al., 1997; MacLeod et al.,
1998) and causes an increase, at odor on-
set, of LFP power in the 3–9 Hz frequency
band (Fig. 5 A,B). This increase in low-
frequency power at odor onset with block
of fast inhibition also was observed in an
AL model (Bazhenov et al., 2001b) and re-
flects an excess of PN activity at odor on-
set, but not later in the response (MacLeod
and Laurent, 1996; Bazhenov et al.,
2001b), which is explained by the loss of
fast inhibition, but not slow inhibition;
slow inhibition contributes to the sculpt-
ing of PN responses occurring in the pres-
ence of PCT (MacLeod and Laurent, 1996;
MacLeod et al., 1998).

We examined whether this small
change in PN response profile could ex-
plain the change in KC response probabil-
ity induced by PCT. Our prediction was
that the slight shift in PN activity toward
the early phases of odor response might
cause the excess KC responses seen in PCT
conditions. If so, KC responses after PCT
treatment would tend to occur at odor on-
set, whereas those in control conditions
would be distributed more widely in time.
This is indeed what we observed. The top
three traces in Figure 5C show smoothed
peristimulus time histograms (PSTHs;
two examples and group data) of KC odor
responses before (left) and after (right)
PCT treatment. The latencies of all recorded responses in both
conditions (control, n � 53 KCs with responses of 122 KCs re-
corded without treatment; PCT, n � 17 KCs with responses of 22
KCs recorded after PCT treatment; different populations of KCs
had to be used here given that, among the population of 16 KCs
recorded both before and after PCT treatment, there were too few
responses in the control condition for a significant comparison to
be made) are shown in the bottom panels of Figure 5C. Although
responses in the control condition occurred throughout the stim-
ulus period and even beyond it, all responses under PCT condi-
tions occurred at the time of the low-frequency power increase in
the LFP (Fig. 5, compare A, C).

Model of KC responses with desynchronized AL input
We next used our network model to examine the possible contri-
bution of different circuit effects on KC odor responses in PCT.
To reproduce the effect of injecting PCT into the AL, we modified
odor-evoked PN firing activity in two ways: (1) oscillatory syn-
chronization was eliminated, and (2) the probability of PN firing
at odor onset was increased (see Materials and Methods) so that
the simulated LFP (obtained by summing all PN activity) dis-
played the early low-frequency peak observed experimentally
(Fig. 5A) and predicted by the full AL model when fast inhibition

was blocked (Bazhenov et al., 2001b). The PNs maintained their
overall slow temporal patterns (Fig. 6A), as observed experimen-
tally (MacLeod and Laurent, 1996; MacLeod et al., 1998), and the
20 Hz oscillations disappeared from the LFP (Fig. 6B).

One effect of disrupting AL oscillatory dynamics is that the
LHIs, which are driven by PNs, also lose their oscillatory synchro-
nization. Figure 6C shows the instantaneous ratio of inhibitory
(LHI-mediated) to excitatory (PN-mediated) synaptic conduc-
tance on an average KC as a function of time during an odor
stimulation. Given the observed phase lag between feedforward
inhibition and PN excitation in control conditions (Perez-Orive
et al., 2002), this ratio directly reflected the 20 Hz periodicity of
the excitatory PN drive. Most LHIs fired at a similar phase of the
oscillation cycle, providing strong inhibitory input to their
postsynaptic KCs (Fig. 6D) in antiphase with PN excitation. After
oscillatory synchronization in the AL was blocked, LHI firing
times were distributed broadly (Fig. 6D) and the instantaneous
contribution to KCs of inhibition relative to excitation was re-
duced (Fig. 6C, thick line). Because LHI inhibition normally lim-
its the temporal window over which a KC can integrate its PN
inputs (Perez-Orive et al., 2002), this relative reduction of feed-
forward inhibition will lengthen this integration window across
oscillation cycles, reducing the preference of KCs for coincident

Figure 4. Extracellular recordings of KC odor responses in vivo while fast inhibition is blocked in the AL. A, Responses of two
different KCs to five different odors, recorded both before and after local PCT injection into the AL. Odor pulses (shaded area), 1 sec;
10 trials per odor, top to bottom. che, Cherry; hxa, hexanal; hx3, 1-hexen-3-ol; nnn, 5-nonanone; oca, octanal; oco, 1-octanol; pnn,
3-pentanone; thx, trans-2-hexen-1-ol. B, Frequency distribution of KC response probabilities (across all odors tested) before and
after PCT injection into AL (n � 16 KCs recorded both before and after PCT treatment). Most KCs decrease their odor
specificity after PCT injection. C, Frequency distribution of KC response intensities as measured by the number of spikes in
a 3 sec window after PCT treatment (n � 17 KCs). Spike counts were computed only for cell– odor pairs with a detected
response. Top, Gray bars depict median, twenty-fifth, and seventy-fifth percentiles for KC populations (control, n � 53 KCs with
responses; PCT, n � 17 KCs with responses). Response intensity does not change significantly after PCT treatment.
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input. Indeed, under these conditions the model KCs lost much
of their odor specificity (Fig. 6E). Furthermore, these responses
occurred at odor onset (Fig. 6E), as observed experimentally (Fig.
5C). If, however, PNs were desynchronized without a slight in-
crease in PN firing probability at odor onset (see Materials and
Methods), the KCs remained silent (data not shown). This sug-
gests that the active properties of KCs alone could limit the du-
ration of the integration window and that an increase in random

correlated PN spikes is required. When KC
active conductances also were blocked un-
der these conditions (and EPSP size prop-
erly adjusted as described above), no other
mechanisms remained in the model to se-
lect for coincident input, and odor speci-
ficity was reduced further (data not
shown).

Coincidence detection versus temporal
integration (modeling)
Theoretically, the high specificity of KCs to
odors (Perez-Orive et al., 2002) might re-
sult not from their ability to detect coinci-
dent input but from appropriately tuned
integrative properties. We wanted to test
whether there is an intrinsic advantage to
using coincidence detection instead of
classical integration over longer time win-
dows to generate sparse response patterns.
Past behavioral work indicated that dis-
rupting oscillatory synchronization of PNs
impairs the discrimination of molecularly
similar odors (Stopfer et al., 1997). A set of
similar input vectors (simulated odors),
which differed only in the fast temporal
structure of evoked PN activity (see Mate-
rials and Methods), was tested on two ver-
sions of our network model: a complete
“coincidence detector” model, as in Figure
3A, and an “integrator” model in which
the active conductances of the KCs (other
than those for Na� spike generation) and
feedforward inhibition were removed. The
synaptic weights from the PNs to the KCs
were adjusted so that the same minimal
number of EPSPs was necessary to trigger a
KC spike in both models. The coincidence
detector model responded to these odors
in a highly specific way, with distinct KCs
responding to different odors (Fig. 7A,
top). Conversely, in the integrator model
the same set of KCs responded to all simi-
lar odors, losing their ability to discrimi-
nate among them (Fig. 7A, bottom).

In another set of tests we used very dis-
similar input vectors, differing by the iden-
tities of the PNs that fired at different ep-
ochs of the odor responses. That is, not
only the fast temporal structure (as in Fig.
7A) but also the slower temporal structure
varied among odors. In our model this
corresponds to molecularly diverse odors
belonging to distinct chemical groups. In
this case we observed that different KCs

responded to different odors in both the coincidence detector
and the integrator models (data not shown). The fact that “inte-
grator” KCs retain their specificity for these odors is a reflection
of their long time windows of integration, which are able to dis-
tinguish between input vectors that differed in these longer time
scales. Conversely, when the differences between the input vec-
tors consist only in changes in their fast temporal structure (i.e.,
whether they synchronize with each other at certain oscillation

Figure 5. Changes to LFP and KC response latency in vivo while fast inhibition is blocked in the AL. A, Examples of four pairs of
LFP recordings (3–55 Hz bandpass-filtered) from four different animals, each pair recorded with the same odor before and after
PCT injection into the AL. Top bar indicates 1-sec-long odor presentation; calibration bar: 80 �V. Insets, Power spectrum for each
LFP recording, calculated from a 1 sec window starting 300 msec after the odor stimulus trigger (300 msec is the approximate time
it takes for the odor to reach the animal). nnn, 5-Nonanone; chx, cis-3-hexen-1-ol; hxo, 1-hexanol; thx, trans-2-hexen-1-ol. B,
Power spectrum averages for all recorded traces (same odors before and after PCT treatment; for each condition, n � 468 trials
from 52 animal– odor pairs). Insets, Mean 	 SEM for 3–9 and 15–35 Hz frequency bands in each condition. After PCT treatment
the power in the 15–35 Hz band is greatly reduced [because of abolishing of PN synchrony as described in MacLeod and Laurent
(1996)], whereas power in the 3–9 Hz band increases ( p � 0.02; n � 52; two-sided paired t test). C, KC odor response latencies.
Shown from the top are PSTHs (smoothed with 10 msec Gaussian) of odor responses: examples of two KCs for each condition
(arrows indicate latencies for each response measured at the time of PSTH maxima), population average, and frequency distribu-
tion of response latencies (control, n � 53 KCs with responses; PCT, n � 17 KCs with responses). In control condition the response
latencies are distributed more widely, whereas after PCT treatment all latencies occur close to odor onset, corresponding to the
time of the low-frequency LFP activity. All panels in A and C use the same temporal scale on the abscissa.

Perez-Orive et al. • Coincidence Detection and Oscillatory Input J. Neurosci., June 30, 2004 • 24(26):6037– 6047 • 6043



cycles or not), only the coincidence detec-
tor models (with short temporal windows
of integration) will be able to discriminate
between them.

To explore the sensitivity to noise of
these two types of models, we used two
modeled stimuli: a pure one and a “noisy”
one, in which 25% extra PN action poten-
tials were added randomly. The model re-
sponses for the “pure” and “noisy” odors
were compared. The coincidence detector
model responded with minor differences
to the control and noisy inputs, whereas
the integrator model was affected drasti-
cally by the extra spikes, losing most of its
odor specificity (Fig. 7B). Figure 7C shows
the distribution of the probabilities of
odor responses for KCs from the two mod-
els. After extra spikes were added to the
input, KCs from the coincidence detector
model retained their odor specificity,
whereas those from the integrator model
responded to most odors that were tested.
In the coincidence detector model an ad-
ditional PN spike potentially can impact
the KC response only if it is placed within a
small time window, which is a rare event if
the extra spikes come from uncorrelated
noise. Conversely, in the integrator model
additional spikes occurring in much larger
time windows can contribute to the KC
responses. These modeling results suggest
that the preference of KCs for coincident
input confers on them the ability to dis-
criminate among similar odors as well as
an increased robustness to input noise.

KC tuning specificity and
phase-locking (experiments)
Some of the mechanisms conferring coin-
cidence detection properties to KCs (oscilla-
tory drive, subthreshold active properties,
phase-delayed feedforward inhibition) also
contribute to the phase-locking of their ac-
tion potentials to the cycles of LFP oscilla-
tions (Perez-Orive et al., 2002). However, the precision of phase-
locking varies among KCs, as does their degree of odor specificity.
We analyzed the relationship between odor responsiveness and
phase-locking in individual KCs and found that the more odor-
specific KCs display tighter phase-locking than the more promiscu-
ous KCs. Figure 8 illustrates the degree of phase-locking for the 10
most specific KCs (having P(Response)�0.06, which is typical for
KCs), compared with 10 promiscuous KCs (having 0.35�P(Re-
sponse)�0.48, which was less common). These KCs were the 10
most promiscuous KCs with the exception of a few KCs with P(Re-
sponse)�0.7; these had similarly poor phase-locking but might be
considered outliers because they were exceptional. Although the av-
erage phase of KC spikes was the same in both groups, the degree of
phase-locking, as reflected by the polar histograms and vector mag-
nitudes, was stronger in the specific than in the promiscuous KCs
(Fig. 8). Throughout the population of recorded responses in KCs,
we found a significant negative correlation between the probability
of odor response and the phase vector magnitude of individual KCs

(r � –0.43; p � 0.005; n � 42 KCs with responses and simulta-
neously recorded LFPs; two-sided correlation t test).

Discussion
Active dendritic conductances have been shown, in culture and
slices, to contribute to coincidence detection by nonlinear sum-
mation of synchronized input in hippocampal and neocortical
pyramidal cells (Margulis and Tang, 1998; Williams and Stuart,
2002; Ariav et al., 2003). Our in vivo experiments show that KCs
in the locust exhibit highly nonlinear subthreshold properties. In
particular, they indicate that coincident EPSPs can summate su-
pralinearly, favoring coincidence detection. Many of these ob-
served subthreshold nonlinearities are likely attributable to the
active conductances observed in KCs in culture (Schafer et al.,
1994; Grunewald, 2003). These nonlinearities can amplify coin-
cident EPSPs (as in the case of spikelets). Other nonlinear prop-
erties appear to be caused by feedforward inhibition (e.g., Fig. 1A,
middle traces, 1B, smaller black arrow), as suggested by whole-

Figure 6. Effects of abolishing PN oscillatory synchronization in the network model. A, Firing patterns of 20 representative PNs
simulating PCT treatment of AL (20 trials for each PN). Horizontal bars, 1 sec odor stimulus. Oscillatory synchronization has been
abolished, but slow temporal patterns remain. B, LFP presents oscillations in the control condition (left) and a flatter pattern with
a low-frequency onset wave after PN oscillatory synchrony is blocked (right). C, Ratio of inhibitory ( g–) to excitatory ( g� )
instantaneous synaptic conductances ( gsyn[O]; see Materials and Methods) of an average KC under control conditions (thin) and
abolished oscillatory synchronization (thick). The 1 sec odor stimulus starts at time � 0 msec. D, PSTHs of all LHIs in the intact
model (top; 0 msec, LFP maxima) and after PN oscillatory synchronization is abolished (bottom; 0 msec, odor onset). When
synchronization is disrupted, LHI activity is distributed more broadly in time. E, KCs exhibit a loss of odor specificity when AL
oscillatory synchronization is abolished (20 trials for each KC). Horizontal bars, 1 sec odor stimulus.
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cell patch-clamp recordings in which inhibition to KCs was
blocked (Perez-Orive et al., 2002). In this sense both intrinsic and
inhibitory mechanisms appear to act together at the subthreshold
level to confer KCs with a preference for coincident input.

The active conductances that have been observed in cultured
KCs (Schafer et al., 1994; Grunewald, 2003) were included in a
Hodgkin–Huxley type KC model (see Materials and Methods).
This simple model of a KC with realistic active conductances can
produce EPSP waveforms similar to those observed in vivo and

demonstrates the important effect that
these active properties have on the tempo-
ral window in which a neuron integrates
its input. In particular, the active repolar-
izing currents decrease the width of
postsynaptic potentials, narrowing the
temporal window in which the active de-
polarizing currents can summate inputs
supralinearly (Johnston et al., 1996;
Fricker and Miles, 2000; Galarreta and
Hestrin, 2001). In agreement with these
results, theoretical studies have found that
the temporal duration of EPSPs is a critical
factor determining whether neurons selec-
tively detect coincident input (Abeles,
1982; Gerstner et al., 1996; Kempter et al.,
1998). When realistic PN activity is in-
jected into a network model that includes
these active KC conductances and feedfor-
ward inhibition, KCs are silent most of the
time, and their responses are highly spe-
cific and brief, indicating that these mech-
anisms are sufficient to explain the spars-
ening of the odor representation observed
in vivo (Perez-Orive et al., 2002).

Disruption of PN oscillatory synchro-
nization has been shown to decrease odor
discriminability behaviorally (Stopfer et
al., 1997) and physiologically at the output
neurons of the MB (�-lobe neurons, di-
rectly downstream of KCs) but, interest-
ingly, not at the level of PNs themselves
(MacLeod et al., 1998). The present results
shed light on the location and possible
mechanisms involved in this loss of dis-
criminability. Our in vivo recordings indi-
cate that the loss of specificity exists first at
the level of KCs. A loss of information un-
der these conditions therefore must occur
in the decoding of PN output by KCs. The
increase in LFP low-frequency power at
odor onset, together with the fact that all
KC responses occur at this time, suggests
that an increase in instantaneous PN firing
at odor onset contributes to the loss of
specificity. A complete AL model in which
fast inhibition is blocked without disrupt-
ing slow inhibition predicted similar
changes in the LFP as those observed here
in vivo (Bazhenov et al., 2001b). In the AL
model these LFP changes reflect a small
increase in PN activity exclusively at odor
onset before slow inhibition has been acti-
vated (Bazhenov et al., 2001b).

Our network model supports the idea that a slight increase in
PN activity that is time-locked to odor onset is important for
generating the observed KC loss of specificity. Furthermore, the
model predicts that a disruption of LHI feedforward inhibition
contributes as well to the observed increase in KC responsiveness;
this inhibition is driven by PN activity, and when PN oscillatory
synchronization disappears, the net inhibitory drive on KCs is
reduced (Fig. 6C), disrupting the periodic resetting of KC
postsynaptic potentials. Under control conditions KCs respond

Figure 7. Effects of coincidence detection versus temporal integration in the network model. A, Sets of “similar” inputs
(differing only in the fine temporal structure of PN firing) were presented to the models. The control network (coincidence
detector, top) responded with specific response patterns for each of these odors (2 representative examples are shown). The
model network with neither active conductances nor feedforward inhibition (integrator, bottom) responded with the same
pattern of active KCs for each of these odors (same 2 odors as at top are shown). B, Effect of additional PN “noise” spikes on KC
responses. Left, Control input; right, 25% extra spikes were added randomly to the input spike trains. Coincidence detection model
(top) responded with minor changes in firing patterns after the extra spikes were added. In contrast, the response of the integrator
model (bottom) changed dramatically, and odor specificity was lost. C, Frequency distribution of KC response probabilities in both
models after the extra spikes were added. The coincidence detector model shows only a slight increase in response probabilities,
whereas the integrator model exhibits a drastic reduction in response specificity.
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selectively to coincident PN input that is
synchronized within an oscillation cycle
(Perez-Orive et al., 2002). When oscilla-
tory synchronization is abolished by
blocking fast inhibition in the AL, this co-
incident input can arise from spurious
correlations caused by a small (and non-
odor-specific) increase in PN activity that
is time-locked to odor onset. Further-
more, if the net effect of feedforward inhi-
bition is weakened, as suggested by the
model, the selectivity for coincident input
is reduced, allowing KCs to integrate over
larger temporal windows. Experimental
findings in the hippocampus (Pouille and
Scanziani, 2001) and auditory systems
(Grothe and Sanes, 1994; Brand et al.,
2002; Wehr and Zador, 2003) support the
idea that feedforward inhibition can be
critical for allowing a neuron to detect
temporal differences in its inputs.

We found a significant correlation between the degree of
phase-locking of individual KCs and their odor specificity: the
more odor specific a KC is, the tighter its phase-locking tends to
be. Given that in this system phase-locking and coincidence de-
tection share common mechanisms (PN oscillatory drive, KC
active properties, feedforward inhibition) (Perez-Orive et al.,
2002) and therefore are likely to be correlated, our current results
suggest a possible link between the sensitivity of individual KCs to
coincidence detection and their odor specificity.

The sparsening of the olfactory representation in the MB
arises as a result of the selectivity of KCs for input that is coinci-
dent within an oscillation cycle (Perez-Orive et al., 2002). Given
that theoretically the sparsening could have resulted from differ-
ent mechanisms relying on integration of inputs over longer time
windows, it is important to consider the possible computational
advantages that can arise from coincidence detection over classi-
cal integration strategies (Sherrington, 1906; Adrian, 1926;
Eccles, 1957; Shadlen and Newsome, 1998). Two difficult prob-
lems an olfactory system must solve are the discrimination be-
tween similar odors and robustness of odor classification in a
highly noisy environment (Cain and Potts, 1996; Laurent, 2002);
other sensory modalities need to solve analogous problems
(Dusenbery, 1992), and, to the extent that they face comparable
constraints, it is possible that they use similar strategies. Our
modeling results indicate that a coincidence detector strategy
presents important advantages in both of these problems over a
classical integrator model. By being sensitive to the timing of
incoming action potentials on a fine time scale, a coincidence
detector allows for an extra coding dimension with which to solve
these complex problems (Laurent, 1999). Our modeling results
show that this extra dimension can allow an olfactory system to
discriminate between similar odors, which differ only in the fine
temporal structure of the AL input, in a manner beyond the
capabilities of a decoding system integrating over longer time
scales. Moreover, our current experimental results indicate that
oscillatory synchronization is required for the sparsening of the
olfactory representation that occurs in the MB. Abolishing these
oscillations has been shown to affect behavioral odor discrim-
inability (Stopfer et al., 1997), supporting the idea that a decrease
in sparseness implies a reduced capacity of the system to repre-
sent distinct odors (Marr, 1969; Kanerva, 1988; Laurent, 2002).
In addition to this, by focusing on specific time windows within

an oscillation cycle, the coincidence detector model is less sensi-
tive to uncorrelated noise in its input, in agreement with theoret-
ical studies in other systems (Konig et al., 1996; Salinas and Se-
jnowski, 2000). In the locust these coincidence detection
mechanisms provide a powerful strategy with which to solve
complex problems every olfactory system encounters.
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