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Slow State Transitions of Sustained Neural Oscillations by
Activity-Dependent Modulation of Intrinsic Excitability
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Little is known about the dynamics and mechanisms of transitions between tonic firing and bursting in cortical networks. Here, we use a
computational model of a neocortical circuit with extracellular potassium dynamics to show that activity-dependent modulation of
intrinsic excitability can lead to sustained oscillations with slow transitions between two distinct firing modes: fast run (tonic spiking or
fast bursts with few spikes) and slow bursting. These transitions are caused by a bistability with hysteresis in a pyramidal cell model.
Balanced excitation and inhibition stabilizes a network of pyramidal cells and inhibitory interneurons in the bistable region and causes
sustained periodic alternations between distinct oscillatory states. During spike-wave seizures, neocortical paroxysmal activity exhibits
qualitatively similar slow transitions between fast run and bursting. We therefore predict that extracellular potassium dynamics can
cause alternating episodes of fast and slow oscillatory states in both normal and epileptic neocortical networks.
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Introduction
Neural oscillations are a hallmark of cortical network dynamics
(Buzsaki and Draguhn, 2004). Sustained oscillatory activity can
be broadly classified as either tonic firing or bursting. Neurons in
a number of brain structures including the thalamus (Jahnsen
and Llinas, 1984a,b) and neocortex (McCormick et al., 1985;
Connors and Gutnick, 1990) exhibit either tonic firing or burst-
ing in a state-dependent way. One of the most dramatic examples
of global transitions between bursting and tonic spiking regimens
is the transition from slow-wave sleep to rapid eye movement
sleep or waking in the thalamocortical system (Steriade et al.,
1993, 2001; Timofeev et al., 2001; Steriade and McCarley, 2005).
Slow transitions between a slow-wave state and a fast-wave state
were also observed in the olfactory cortex (Murakami et al.,
2005). Coexistence of bursting and tonic spiking regimens is not
limited to vertebrates (Lechner et al., 1996; Turrigiano et al.,
1996; Shilnikov et al., 2005). Different levels of synaptic excita-
tory drive, activation of intrinsic conductances by neuromodula-
tion, and changes in the extracellular ionic environment control
the state-dependent oscillatory regimen (McCormick, 1992;
Gil et al., 1997; Steriade and McCarley, 2005). Many of these
mechanisms modulating neural excitability are activity-
dependent themselves and therefore work in a feedback man-

ner. However, the interaction between intrinsic or network
oscillatory dynamics and activity-dependent feedback control
mechanisms in cortical networks is poorly understood. In par-
ticular, little is known about how these mechanisms can lead
to (1) sustained neural activity in the absence of external input
and (2) slow transitions between different oscillatory regi-
mens (Steriade, 2004).

Intrinsic excitability depends on the reversal potential for
potassium-mediated currents, which is a function of extracellular
potassium concentration [K�]o. Extracellular potassium accu-
mulates during sustained neural activity (Moody et al., 1974;
Heinemann et al., 1977; Amzica et al., 2002; Timofeev et al.,
2002). In turn, elevated [K�]o increases intrinsic excitability,
leading to spontaneous neural activity (Rutecki et al., 1985;
Traynelis and Dingledine, 1988). Thus, [K�]o dynamics modu-
late intrinsic excitability in a positive-feedback manner. It is well
established that [K�]o increases during paroxysmal activity
(Moody et al., 1974; Heinemann et al., 1977); however, whether
elevated [K�]o is the primary factor eliciting seizures or is a by-
product of increased firing remains unknown. Glia cells play an
important role in the regulation of [K�]o by effectively acting as
a potassium buffer (Kuffler et al., 1966; Orkand et al., 1966; Ko-
fuji and Newman, 2004).

Here, in a realistic neocortical network model with potassium
dynamics (Bazhenov et al., 2004), we investigate the complex
cellular and network behavior caused by activity-dependent
changes in extracellular potassium concentration. We show that a
model of neocortical circuitry that includes the interaction be-
tween extracellular ion concentration and intrinsic excitability
exhibits slow state transitions between two distinct oscillatory
firing modes (tonic spiking and bursting) that have been ob-
served in vivo but still lack theoretical explanations.
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Materials and Methods
Computational models. We used a mathematical model of a cortical net-
work consisting of cortical pyramidal (PY) cells and inhibitory interneu-
rons (INs) to study the effect of extracellular potassium dynamics on
oscillatory firing regimens. Each model neuron (Mainen and Sejnowski,
1996; Bazhenov et al., 2004) incorporated both intrinsic and synaptic
currents and was composed of an axosomatic compartment with mem-
brane voltage VS governed by the following:

g�VS � VD� � �I S
int , (1)

and a dendritic compartment with membrane voltage VD governed by
the following:

CmdVD/dt � �gL�VD � EL� � g�VD � VS� � I D
int � I syn, (2)

where g is the coupling conductance, IS
int and ID

int are the intrinsic
currents in the two compartments, Cm is the membrane capacitance, and
gL and EL are the conductance and reversal potential of the leak current,
respectively. As in previous studies (Mainen and Sejnowski, 1996), we
have omitted the axosomatic capacitance because axosomatic currents
are sufficiently strong to change the somatic membrane voltage almost
immediately. Assuming these very fast dynamics to be instantaneous by
setting the somatic conductance to zero permitted the use of a larger
integration step size, resulting in increased computational efficiency. The
ratio of dendritic to axosomatic area r was chosen to mimic a regular
spiking neuron (r � 165) for PY and a fast spiking neuron (r � 50) for IN.
Both active and passive biophysical mechanisms regulate potassium in
the extracellular space. In the model, [K �]o was continuously computed
and the reversal potential for channels permeable to potassium updated
accordingly. We studied the behavior of a single PY cell, a small globally
connected network, and a larger one-dimensional two-layer (PY and IN)
network. To investigate the effects of changes in [K �]o on the firing
behavior, we explicitly controlled and varied [K �]o in a subset of simu-
lations (bifurcation analysis).

Intrinsic currents. Intrinsic ionic currents were mediated by a set of
Hodgkin–Huxley type conductances. Fast inactivating Na � channels
(high and low density in axosomatic and dendritic compartment, respec-
tively) and fast delayed rectifier K � channels (axosomatic compartment)
formed the basis of action potential generation. Further, persistent so-
dium conductance GNaP, slow voltage-gated K � conductance GKm, slow
calcium-activated K � conductance GKCa, high-threshold Ca 2� conduc-
tance GCa, and hyperpolarization-activated depolarizing conductance Gh

were included in the dendritic compartment and K � leak conductance
GL was introduced in both axosomatic and dendritic compartments
(Timofeev et al., 2000; Bazhenov et al., 2004). In a previous study
(Bazhenov et al., 2004), many of these conductances were systematically
varied to establish model robustness for parameter variations. The rela-
tive balance of intrinsic currents was altered by varying the maximal
conductances. Here, we considered GCa � 0.012– 0.018 mS/cm 2, GKCa �
1.5–3.5 mS/cm 2, GNaP � 3.0 – 4.0 mS/cm 2, and Gh � 0.0 – 0.1 mS/cm 2.

Synaptic currents. Synaptic transmission was modeled by a first-order
kinetic scheme of neurotransmitter binding and unbinding to postsyn-
aptic receptors that was shown to well fit experimental data (Destexhe et
al., 1994). We assumed neurotransmitter release time courses to be of
rectangular shape, reducing the time course of the fraction of open re-
ceptors [O](t) after a presynaptic spike to a single exponential. All syn-
aptic currents Isyn were governed by the following:

Isyn � gsyn�O��V � Esyn�, (3)

where gsyn is the maximal conductance ( gAMPA(PY–PY) � 0.20 �S,
gNMDA(PY–PY) � 0.013 �S, gAMPA(PY–IN) � 0.010 �S, gNMDA(PY–IN) �
0.014 �S, gGABA(IN–PY) � 0.05 �S) and Esyn the reversal potential (EAMPA

� 0 mV, ENMDA � 0 mV, EGABAA
� �80 mV). Dependence of NMDA

receptors on postsynaptic membrane voltage Vpost was modeled by
1/(1�exp(�(Vpost � Vth)/�)), with Vth � �25 mV and � � 12.5 mV.

Short-term synaptic depression was described by a depression variable
D � 1, which was multiplied with the maximal synaptic conductance
(Tsodyks and Markram, 1997; Markram et al., 1998). D was adjusted

with factor r � 0.93 (7% resources per action potential) from its previous
value Di after a presynaptic spike at time ti with recovery time constant �
� 700 ms:

D � 1 � �1 � D iR�exp���t � ti�/��. (4)

Depression D accounts for short-term use-dependent weakening of syn-
aptic strength after subsequent stimulation and recovery thereof. To
study the role of synaptic interaction, the balance of excitation and inhi-
bition was altered in a subset of simulations by multiplying the maximal
conductances of the corresponding synapses by the factors 0.8, 0.9, 1.1,
and 1.2 (scaling factors PY–PY for excitatory coupling between pyrami-
dal cells and IN–PY for inhibitory coupling, respectively).

Potassium dynamics. [K �]o was computed for extracellular volumes
surrounding each cell. Our model of extracellular potassium dynamics
followed a previously developed model (Bazhenov et al., 2004) in which
parameters were systematically varied to study the robustness of the
model. Processes affecting [K �]o were channels permeable to K �, K �

pumps, and glial K � uptake (buffering) G:

d�K��o�D,S�/dt � �k/Fd�I�K � G, (5)

where k � 10 denotes a conversion factor, F � 96489 C/mol, the Faraday
constant, and d the ratio of the volume of the extracellular compartment
to the surface area. The total potassium current I�K is the sum of all
potassium currents (fast rectifying IK, calcium-activated IKCa, voltage-
dependent non-inactivating IKm, and leak current IL) and the current
IKPump mediated by K � pumps:

I�K � IK � IKCa � IKm � IL � IKPump . (6)

The K � current IKPump established by K � pumps was an inward current
that had a sigmoidal dependence on the ratio of steady-state [K �]o(eq) �
3.5 mM to current [K �]o and saturated at Imax, which was chosen to
balance K � leak current (dendritic compartment Imax � 5�A/cm 2, so-
matic compartment Imax � 40 �A/cm 2):

IKPump � Imax/�1 � ��K��o�eq�/�K
��o��

2. (7)

Glial K � uptake current G was modeled by a free buffer (total buffer
[Bmax] � 500 mM) with concentration [B], which bound and unbound
from K � with according on- and off-rates k1 � 0.008 and k2 � k1/(1 �
exp(([K �]o � [K �]o(th))/�1.15)) governed by first order kinetics:

d�B�/dt � k1��B�max � �B�� � k2�K
��o�B�,

G � k1��B�max � �B��/k1N � k2�K
��o�B�. (8)

Threshold concentrations [K �]o(th) (15 mM for somatic compartment, 9
mM for dendritic compartment) and k1N � 1.1 were chosen such that K �

concentration equilibrated both for silent and tonic firing mode (Bazhe-
nov et al., 2004).

Changes in [K �]o changed the reversal potential for all conductances
modeling ion channels permeable to K �. The Nernst equation described
the reversal potential for pure K � conductances as follows:

EK � 26.64 mV ln��K��o/�K
��i�. (9)

The reversal potential for Gh and GL, which are ion channels permeable
to several ion types, were updated according to the Goldman–Hodgkin–
Katz equation, taking into account the different ionic concentrations
([Na �]o � 130 mM, [Na �]i � 20 mM, [Cl �]o � 130 mM, [Cl �]i � 8 mM)
and degrees of permeability:

Eh � 26.64 mV ln��K��o � 0.2�Na��o�/��K
��i � 0.2�Na��i�,

(10)

EL � 26.64 mV ln��K��o � 0.085�Na��o � 0.1�Cl��i�/��K
��i

� 0.085�Na��i � 0.1�Cl��o�. (11)

Calcium dynamics. Intracellular calcium concentration [Ca 2�]i was
computed for the dendritic compartment in which the calcium-activated
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potassium channels were located. Calcium influx through high-
threshold calcium channels was counteracted by exponential return to
baseline concentration [Ca 2�]i(eq) modeling pumps extruding calcium
from the cytosol:

d�Ca2��i/dt � kICa/�2F� � ��Ca2��i�eq� � �Ca2��i�/�Ca , (12)

where k and F are constants as described above, [Ca 2�]i(eq) � 0.0001 mM

is the equilibrium concentration, and �Ca � 500 ms is the recovery time
constant.

Network topology. To dissociate the effect of synaptic coupling from
the effect of intrinsic cellular responses to depolarized K � reversal po-
tentials, we first studied the behavior of a single PY cell. Then, we used a
small network of five PY cells and one IN with global connectivity where
each PY cell was connected to every other PY cell by excitatory synapses
(AMPA and NMDA). The IN received excitatory synapses from all PY
cells (AMPA and NMDA) and projected back to all PY cells (GABAA).
This compact network was a direct extension of the case of an isolated PY
cell because no localized spatial patterns of activity arose and all neurons
exhibited synchronous transitions in their firing regimens.

We studied the effect of changes in excitatory and inhibitory coupling
by systematically varying the maximal conductance for AMPA and
NMDA or GABA-mediated synaptic currents, respectively. We further
used a larger network model composed of two one-dimensional layers
formed by 60 PY cells and 15 IN, respectively. Each PY cell was connected
to five neighboring PY cells on both sides, each PY cell connected to three
neighboring INs, and each IN projected back to a total of eleven neigh-
boring PY cells.

Bifurcation analysis. To study how extracellular K � concentration
[K �]o modulated neural activity, we held [K �]o constant in a subset of
the simulations to determine the firing behavior as a function of [K �]o.

This corresponds to opening the positive feed-
back loop between neural activity and [K �]o.
Such analysis provided useful predictions for
the case where [K �]o would freely evolve (i.e.,
closed feedback loop) because of the vastly dif-
ferent time-scales of the [K �]o dynamics (slow)
and the dynamics of the ion conductances me-
diating neural activity (fast). In other words, we
used the slow/fast analysis technique for sys-
tems with widely differing time scales [geomet-
ric singular perturbation theory (Rinzel, 1985;
Rinzel and Lee, 1987; Jones, 1995; Osinga and
England, 2005)]. Extracellular K � concentra-
tion [K �]o, which exhibited very slow dynam-
ics with time-scale corresponding to entire ep-
ochs of oscillatory firing at a given frequency,
was treated as a parameter for bifurcation anal-
ysis. We used a combination of direct integra-
tion for different parameter values, continua-
tion analysis [MATCONT software (Dhooge et
al., 2003)], and Poincare cross sections
(Kuznetsov, 2004) to trace and analyze
bifurcations.

In vivo experiments. Experiments were con-
ducted on cats anesthetized with ketamine-
xylazine anesthesia (10 –15 and 2–3 mg/kg i.m.,
respectively). The animals were paralyzed with
gallamine triethiodide (20 mg/kg) after the
electroencephalogram (EEG) showed typical
signs of deep general anesthesia, essentially
consisting of slow oscillation (0.5–1 Hz). Sup-
plementary doses of the same anesthetics (5 and
1 mg/kg) or ketamine (5 mg/kg) were adminis-
tered at the slightest changes toward dimin-
ished amplitudes of slow waves. The cats were
artificially ventilated with the control of end-
tidal CO2 at 3.5–3.7%. Body temperature was
maintained at 37–38°C and the heart rate was
	90 –100 beats/min. For intracellular record-

ings, stability was ensured by the drainage of the cisterna magna, hip
suspension, bilateral pneumothorax, and filling the hole made for re-
cordings with a solution of 4% agar. At the end of experiments, the cats
were given a lethal dose of pentobarbital (50 mg/kg, i.v.). All experimen-
tal procedures were performed according to national guidelines and were
approved by the Committee for Animal Care of Laval University.

Intracellular recordings from suprasylvian association areas 5 and 7
were performed using sharp glass micropipettes filled with a solution of
3 M potassium-acetate (KAc). Field potentials were recorded in the vicin-
ity of impaled neurons. All electrical signals were sampled at 20 kHz and
digitally stored on Vision (Nicolet, Middleton, WI). Offline computer
analysis of electrographic recordings was done with IgorPro software
(WaveMetrics, Lake Oswego, OR).

Results
Transition between slow bursting and tonic firing in a
single cell
A brief increase in [K�]o was used to initiate activity in an oth-
erwise silent PY neuron. An isolated PY cell model (GCa � 0.015
mS/cm 2, Gh � 0.1 mS/cm 2) with a spatially limited extracellular
compartment responded to a brief [K�]o elevation with oscilla-
tory firing before returning to rest. Although [K�]o decreased to
its resting value (3.5 mM), the PY cell exhibited several oscillatory
modes: first, slow-bursting oscillations and then tonic firing (Fig.
1A, transition in B). For significantly elevated [K�]o 
5.6 mM,
bursts with spike inactivation, pronounced after-
hyperpolarization, and strong calcium influx occurred (Fig. 1C,
left, phase space plot of a single burst). Calcium influx during the
depolarized state caused the calcium-activated potassium con-

Figure 1. A, A single PY neuron exhibits bursting and then tonic firing after a brief increase in extracellular potassium concen-
tration ([K �]o) before returning to rest. B, Membrane voltage (top) and [K �]o (bottom) time courses for the time interval
underlined in A. The transition from bursting to tonic firing (spike doublets) at [K �]o � 5.6 mM is shown. C, Phase space plots
([K �]o, intracellular calcium [Ca 2�]i, and membrane voltage Vm) for the three intervals underlined in A. The arrow indicates the
direction of time. A single burst with minor spike inactivation and after-hyperpolarization (left), a single burst without spike
inactivation and reduced after-hyperpolarization (middle), and a spike doublet (right) are shown.
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ductance to activate, which in turn mediated burst termination
and subsequent after-hyperpolarization (supplemental Fig. 2,
available at www.jneurosci.org as supplemental material). For
[K�]o � 5.6 mM, however, there was a transition to bursts with
reduced after-hyperpolarization and with minor spike inactiva-
tion (Fig. 1C, middle). For [K�]o � 5.5 mM, the cell switched to
tonic firing (Fig. 1C, right, spike doublets) before it eventually
returned to rest. Both during slow bursting and tonic firing, po-
tassium efflux occurred mainly through the fast delayed rectifier
(41 and 43% for bursting and tonic firing, respectively) and
through the leak conductance (43 and 56%, respectively). These
oscillatory firing patterns for elevated [K�]o are not a mere con-
sequence of the depolarization of the neuron because an injected
depolarizing current step caused only tonic firing with spike ad-
aptation (supplemental Fig. 1, available at www.jneurosci.org as
supplemental material).

Because [K�]o changed on a very slow time-scale, we next
treated [K�]o as a parameter to determine the firing behavior of
the cell as a function of [K�]o. Therefore, all of the mechanisms
controlling [K�]o evolution in our model were blocked and the
neuron behavior was analyzed for different fixed values of [K�]o

within the physiological range. Specifically, we focused on the
occurrence of different stable firing modes as a function of pa-
rameter [K�]o (Fig. 2). For low [K�]o, the neuron was at rest
(Fig. 2A, left). For increasing [K�]o, the resting potential became
more depolarized as the driving force for potassium decreased.
For [K�]o � 4.85 mM, the neuron switched to tonic firing by
means of a saddle-node bifurcation [type I neural oscillator (Rin-
zel and Ermentrout, 1989; Ermentrout, 1996)] (Fig. 2C, fixed
point bifurcations). Tonic firing and slow bursting coexisted for
[K�]o between 5.45 and 6.35 mM. Slow bursting was the only
stable state for [K�]o between 6.35 and 9.45 mM. At [K�]o � 9.46
mM, a new stable state corresponding to a depolarized state
(Vm � �26.3 mV) appeared by means of a subcritical Hopf bi-
furcation (Fig. 2C). The depolarized state coexisted with the slow
bursting regimen in a narrow bistable region before it became the
only stable state at [K�]o � 10.05 mM (Fig. 2A, right).

To further characterize the transition between tonic firing and
slow bursting, we computed a Poincare cross section by calculat-
ing the values of intracellular calcium concentration [Ca 2�]i each
time the membrane potential crossed the threshold Vm � �20
mV; these values were plotted as a function of [K�]o (Fig. 2B,
Poincare cross section). In such a representation, periodic oscil-
lations (corresponding to limit cycles) are represented as points
defined by a threshold crossing of a trajectory. This approach
allows the graphical representation of changes in the nature of an
oscillatory (firing) behavior as a function of a parameter. For a
given value of [K�]o, a tonic spiking regimen is represented on
this Poincare plot by a single point because [Ca 2�]i assumes the
same value at Vm � �20 mV for every spike. During a burst,
however, [Ca 2�]i increases after each spike of a given burst.
Therefore, a burst appears as a group of points each representing
a single spike. In other words, a set of parallel lines in the Poincare
plot (Fig. 2B, Poincare cross section) illustrates a range of [K�]o

values for which bursting occurred. We gradually increased and
decreased [K�]o to reveal the complete tonic firing and slow
bursting region, respectively. The bistability between tonic firing
and slow bursting was associated with a hysteresis (Fig. 2B, com-
pare top and bottom plots). For increasing [K�]o, the cell stayed
in tonic firing until slow bursting with spike inactivation became
the only stable state at [K�]o � 6.40 mM. Decreasing [K�]o

caused the cell to stay in slow bursting mode until tonic firing was
the only stable state at [K�]o � 5.75 mM (different from Fig. 2A

because now non-zero Gh � 0.05 mS/cm2). For increasing [K�]o,
the tonic firing region consisted of three subregions with single
spikes, spike doublets, and single spikes, respectively (Fig. 2B,
top). Time courses for spike doublets ([K�]o � 5.00 mM) and
single spikes [K�]o � 6.00 mM) are shown in Figure 3, A and B,
respectively. Note that the left region with single spikes existed
only in the case of a nonzero h conductance (Gh � 0.05 mS/cm 2).
At [K�]o � 6.39 mM, tonic firing started to exhibit slow modu-
lation of the membrane voltage and the spiking frequency (Fig.
3C,D, spectrogram). Detailed bifurcation analysis revealed that at
[K�]o � 6.39 mM, the limit cycle corresponding to the tonic
spiking lost its stability by a supercritical Neimark–Sacker bifur-
cation (Kuznetsov, 2004), leading to a stable invariant torus in
the phase space representation of the dynamical system (Fig. 2D).
This type of behavior was not found for decreasing [K�]o (Fig.
2B, bottom). Instead, two distinct bursting regimens, with and
without spike inactivation, were found (Fig. 3E,F). For these
bursts, transition from silent state to spiking (burst onset) oc-
curred through a saddle-node bifurcation of the fixed point cor-

Figure 2. Bifurcation analysis of PY cell dynamics. A, Maximum and minimum of membrane
voltage as a function of [K �]o. Solid lines, Stable fixed points. Circles, Stable limit cycles. Four
stable states are found: rest, tonic firing, slow bursting, and a depolarized state, with bistability
occurring between tonic firing and slow bursting and between slow bursting and the depolar-
ized state (Gh � 0.0 m S/cm2). B, Poincare cross section. Intracellular calcium concentration for
Vm � �20 mV as a function of slowly increasing (top) and decreasing (bottom) [K �]o is
shown. Inset, Enlargement of transition from tonic firing to slow bursting (Gh � 0.05 m S/cm2).
C, Stable fixed points corresponding to rest and the depolarized state are connected via unstable
fixed points. Transition from silent to tonic firing is a saddle-node bifurcation. Transition from
slow bursting to depolarized is a Hopf bifurcation. Insets illustrate eigenvalues at the bifurcation
point. D, Three-dimensional representation of inset from B showing transition from tonic firing
to frequency-modulated fast firing. Neimark–Sacker bifurcation of limit cycle leads to slow
spike frequency modulation for [K �]o 
 6.33 mM. Color scheme, From blue to red for low to
high values of [K �]o.
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responding to the silent (hyperpolarized) state. Return to the
silent state (burst offset) occurred through a Hopf bifurcation of
the fixed point corresponding to the depolarized (upper) state.
Activation of IK(Ca) (slow variable) controlled the transitions be-
tween silent and oscillatory states during bursts (data not shown).

The biophysical mechanism for the bistability with hysteresis
between tonic firing and slow bursting was examined by (1) com-
paring the ionic currents in both regimens for [K�]o � 6.00 mM

(supplemental Fig. 2, available at www.jneurosci.org as supple-
mental material) and (2) systematically varying the intrinsic con-
ductances involved in burst generation (supplemental Fig. 3,
available at www.jneurosci.org as supplemental material). We
found that the different levels of deinactivation of the high-
threshold calcium current ICa explain the hysteresis between
tonic firing and bursting. ICa reinforced bursting and therefore
increased the range of [K�]o values for which the neuron stayed
in bursting mode. In contrast, when the neuron was in tonic
firing mode, insufficient ICa deinactivation between spikes pre-
vented switching to the bursting mode unless [K�]o was strongly
elevated (supplemental Fig. 2, bottom panels, available at www.
jneurosci.org as supplemental material). To confirm the role of
ICa and to test the robustness of our model, we separately varied
the three intrinsic conductances GCa, GNaP, and GKCa, involved in
initiating, sustaining, and terminating bursts, to study their im-
pact on the bistability with hysteresis between tonic firing and
bursting. Further, the effect of introducing a hyperpolarization-
activated depolarizing conductance Gh was examined. As antici-
pated, the width of the hysteresis between tonic firing and burst-
ing varied with GCa, whereas changes in the other conductances
had minimal impact on the qualitative nature of the hysteresis
(supplemental Fig. 3, available at www.jneurosci.org as supple-

mental material). These findings indicate the pivotal role of the
high-threshold calcium conductance GCa in mediating bistability
between the two oscillatory firing regimens.

Slow transitions between oscillatory states in small network
To determine whether the hysteresis between tonic firing and
slow bursting was maintained in a network of neurons, we stud-
ied a network consisting of five PY cells with all-to-all excitatory
coupling and one IN, which mediated global inhibition. When
[K�]o was held at various fixed values, four different states equiv-
alent to those in the single cell model were found: silence, fast run,
slow bursting, and a depolarized state (Fig. 4A, left, transition
from fast run to slow bursting). Fast run (fast bursting with 2– 4
spikes) corresponded to tonic firing found in the single cell
model. Each of the three transitions between neighboring states
was associated with a hysteresis, confirming that the hystereses
found in the single cell model were indeed maintained in the
small network.

When [K�]o was released and continuously updated based on
K� currents, K� pumps, and glial buffering (Eq. 5), a major
difference between the single-cell model and the network model
was found. For a single PY cell surrounded by an extracellular
compartment, [K�]o decreased steadily during both tonic spik-
ing and bursting. Thus, the hysteresis between tonic firing and
slow bursting had no effect on neural dynamics triggered by ele-

Figure 3. Time course of membrane voltage (1 s duration) for different values of [K �]o. A,
Spike doublets for [K �]o � 5.00 mM. B, Fast tonic firing for [K �]o � 6.00 mM (tonic firing
branch, [K �]o increasing). C, Fast tonic firing modulated by slow oscillation corresponding to
Neimark–Sacker bifurcation of limit cycle and consecutive torus bifurcation with period dou-
bling for [K �]o � 6.39 mM (tonic firing branch, [K �]o increasing). D, Spectrogram of C; nor-
malized arbitrary units. E, Bursting with spike inactivation for [K �]o � 6.00 mM (slow bursting
branch, [K �]o decreasing). F, Bursting without spike inactivation for [K �]o � 5.75 mM (slow
bursting branch, [K �]o decreasing).

Figure 4. Globally connected network with five PY cells and one IN. A, Left, Bifurcation
analysis (minimum of membrane voltage): hysteresis between fast run and slow bursting for
[K �]o between 5.0 and 5.4 mM. Circles denote stable limit cycle oscillations. Top right, Sche-
matic of slow periodic network dynamics. Bottom right, Averaged [K �]o change rate as a
function of [K �]o. B–D, Slow transitions after initial brief increase in [K �]o. B, Network activity
of PY cells (40 s duration) shows alternating epochs of fast run and slow bursting. C, [K �]o

increased during fast run and decreased during slow bursting. The upper switching point for
transition from fast run to slow bursting and the lower switching point for transition from slow
bursting to fast run correspond to hysteresis endpoints in A. D, Membrane voltage time course
of PY cell (top trace) and of IN (bottom trace).
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vated [K�]o because the cell never switched back from tonic
firing to bursting. In the small network, however, the cells did not
return to rest after the initial [K�]o injection but instead dis-
played self-sustained oscillations with periodic alternations be-
tween fast run and slow bursting (Fig. 4B, activity of all five PY
cells as a function of time for 40 s). [K�]o increased during fast
run, which caused a transition of the network to the slow bursting
regimen as predicted by the upper endpoint of the hysteresis
found by bifurcation analysis (Fig. 4A, arrow 1, top right). If
there were no hysteresis, this would lead to an immediate return
to fast run because [K�]o decreased during slow bursting. Be-
cause of the hysteresis, however, slow-bursting mode was main-
tained until the lower transition point for [K�]o back to fast run
was reached, where the cycle restarted (Fig. 4A, arrow 2, top
right). By averaging over many periods during fast run and a
single period during slow bursting, we determined the time de-
rivative of extracellular potassium concentration as a function of
[K�]o if it were free to change. This further illustrates the fact that
[K�]o increases during fast run and decreases during slow burst-
ing (Fig. 4A, bottom right, dashed line represents d[K�]o/dt � 0
“nullcline”). The dependence of the lower and upper transition
points on whether [K�]o was increasing or decreasing matched
the prediction from bifurcation analysis (Fig. 4A, end points of
hysteresis). Thus, synaptic interaction stabilized the network in
the hysteresis region between fast run and slow bursting ([K�]o

between 5.0 and 5. 4 mM). Synchrony is not required for this
mechanism to work as long as the time derivatives of potassium
follow this general rule. Rather, overall excitation mediated by
network interaction needs to provide sufficient excitatory drive
for firing frequencies, which enable potassium to increase during
tonic firing (fast run) without causing a switch to the bursting
regimen. Note that a single PY cell with a self-excitatory synapse
did not exhibit these transitions (data not shown); it displayed
either bursting (for strong coupling) or tonic firing (for weak
coupling). Because the inhibitory interneuron was active during
epochs of fast run, the spike structure of the fast run was different
between the single cell and small network models. PY neurons
from the network displayed fast oscillations with groups of spikes
separated by short hyperpolarizing events mediated by IPSPs.
When excitatory input to the inhibitory interneurons was re-
duced such that they became silent during fast run, PY neurons
displayed tonic spiking activity similar to the single-cell model
(supplemental Fig. 4, available at www.jneurosci.org as supple-
mental material).

Single-cell model analysis revealed that high-threshold cal-
cium current ICa inactivation was critical for determining the
oscillatory mode (tonic spiking or bursting). In an additional set
of simulations, we extended this finding to the network model by
perturbing inactivation variable h of ICa for all neurons in the
network to induce switching between the two oscillatory states
(supplemental Fig. 5, available at www.jneurosci.org as supple-
mental material). The network switched from fast run to slow
bursting when enforcing a value of h � 0.53 (mean value between
bursts) for 0.25 s. Similarly, imposing a value of h � 0.36 (mean
value during fast run) for 1 s during slow bursting caused the
network to switch to fast run.

Role of synaptic conductances
Network interaction was critical for the occurrence of alternating
epochs of fast run and slow bursting. Therefore, we systematically
varied the synaptic strength to uncover its specific effect on the
network dynamics. Increasing excitation (PY–PY coupling)
without changing inhibition (IN–PY � 1.1) widened the [K�]o

hysteresis (from 0.24 to 0.62 mM for PY–PY � 0.8 and 1.2, re-
spectively) (Fig. 5A, left, dashed line) and prolonged the episodes
of slow bursting at the expense of fast run (solid lines). The in-
crease in hysteresis width was mainly caused by a lower value of
[K�]o for which the network switched from slow bursting to fast
run (from 5.38 to 4.77 mM for PY–PY � 0.8 and 1.2, respectively)
(Fig. 5A, right). In contrast, increasing inhibition (IN–PY cou-
pling) without changing excitation (PY–PY � 0.9) shortened ep-
ochs of slow bursting and prolonged epochs of fast run, respec-
tively (Fig. 5B, left, solid lines). The [K�]o hysteresis was
narrowed (from 0.75 to 0.28 mM for IN–PY � 0.8 and 1.2, respec-
tively) (Fig. 5B, left, dashed line), mostly by an increase in the
range of [K�]o for which fast run was the only stable state (from
4.86 to 5.36 mM for IN–PY � 0.8 and 1.2, respectively). Thus,
during fast run, [K�]o increased more slowly because of the re-
duced firing frequency. Additionally, increased inhibition forced
the network back to fast run for higher [K�]o (Fig. 5B, right).
Examples of nonalternating regimens resulted from major
changes in the balance between excitation and inhibition (Fig.
5C, right, areas in dark blue). For strong excitation and weak
inhibition, the network returned to the silent state after a single

Figure 5. Quantification of periodic slow transitions between slow bursting and fast run as a
function of excitatory and inhibitory coupling. Balanced excitation and inhibition causes alter-
nating epochs of slow bursting and fast run. Left, Duration of epochs of slow bursting and fast
run (blue and green solid lines, respectively), width of hysteresis (dashed red line), and upper
and lower endpoints of hysteresis (right) for changing excitatory coupling (A) (PY–PY) and
inhibitory coupling (IN–PY) (B). Values determined from simulation of 400 s of activity are
shown. Error bars indicate SEM. C, Overview plot showing logarithmic ratio of duration of fast
run and slow bursting (left) and width of hysteresis (right) as a function of synaptic excitation
and inhibition. The top left corner corresponds to the regimen with exclusive fast run, whereas
the bottom right corner denotes the regimen with exclusive slow bursting.
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epoch of bursting. Conversely, strong inhibition and weak exci-
tation led to sustained fast run (supplemental Fig. 6, time courses,
available at www.jneurosci.org as supplemental material). Com-
binatorial variation of both excitatory (PY–PY) and inhibitory

(IN–PY) synaptic coupling strength
showed that the existence of the transi-
tions between fast run and slow bursting is
robust to changes in synaptic connectivity
as long as the balance between excitatory
and inhibitory coupling was maintained.
Both the logarithmic ratio of the duration
of fast run and slow bursting episodes and
the width of the hysteresis were only
slightly affected by changes in synaptic
connectivity strength as long as excitation
and inhibition was scaled accordingly (Fig.
5C, diagonal structure).

Bursts differed in their characteristics
depending on the balance between excita-
tion and inhibition (Fig. 6). In the case of
reduced excitation (PY–PY � 0.9) and in-
hibition (IN–PY � 0.8), bursts exhibited a
gradual decline in spike amplitude, spike
inactivation, and a pronounced after-
hyperpolarization (Fig. 6A, first row). Ex-

citatory AMPAergic input to PY cells built up during spiking at
the onset of the burst. NMDA current was active until burst ter-
mination (Fig. 6A, second row). For increased inhibition (IN–
PY � 1.2) (Fig. 6B), bursts showed decreased spiking frequency
and lacked both spike inactivation and after-hyperpolarization.
Excitatory synaptic currents mediated by AMPA and NMDA re-
ceptors were of the same order of magnitude and similar dura-
tion. Balancing increased inhibition (IN–PY � 1.2) by strength-
ening excitation (PY–PY � 1.2) increased both firing frequency
within the burst and the total number of spikes per burst (Fig.
6C). Fast run spiking structure was less sensitive to moderate
changes in the balance between excitation and inhibition, as long
as the inhibitory interneuron remained active during periods of
fast runs (supplemental Fig. 4, available at www.jneurosci.org as
supplemental material).

Slow transitions of oscillatory states in large network
In a larger network consisting of 60 PY cells and 15 INs with local
synaptic connectivity, each PY neuron switched between fast run
and slow bursting at a similar time scale, as in the case of the
small, compact network (Fig. 7A, top: network activity as a func-
tion of time, bottom: single membrane voltage trace). In contrast
to the small network, however, state transitions did not occur
synchronously across the network. Rather, a given PY cell that
reached the [K�]o required for a state transition first switched its
oscillatory firing mode and induced an according transition in
the neighboring PY cells by synaptic coupling. Epochs of slow
bursting or fast run therefore spread in neighboring cells. In other
words, state transitions were induced according to the hysteresis
in the leading neurons, which were the cells with the highest
[K�]o (Fig. 7B, top). Transitions in the neighboring cells were
then promoted by the synaptic coupling. This resulted in a mul-
titude of switching points for each neuron (Fig. 7B, bottom). The
behavior of the neurons initiating network transitions was gov-
erned according to the bistability described before. Intracellular
calcium [Ca 2�]i was highly elevated during paroxysmal activity
(
0.004 mM), in comparison to the equilibrium value at the
resting potential (0.0001 mM). [Ca 2�]i remained more or less
constant during epochs of fast run and oscillated during bursting
(Fig. 7C, top) because ICa was the major contributor to the burst
depolarization. In any given PY neuron, peak value of [Ca 2�]i

almost doubled during each burst (Fig. 7C, bottom). Including

Figure 7. Large network (60 PY cells and 15 INs) with local synaptic connectivity. A, PY cell
activity as a function of time (top). The time course of Vm for PY 30 is shown (bottom, arrow in
top). Cells switched between bursting and fast run as in the case of the small network. Because
of the local synaptic connectivity, the activity pattern exhibited complex spatial structure. B,
[K �]o in extracellular compartments surrounding PY cells as a function of time (top). The time
course of [K �]o for PY 30 is shown (bottom, arrow in top). C, Intracellular calcium [Ca 2�]i in PY
cells as a function of time. The time course of [Ca 2�]i for PY 30 is shown (bottom, arrow in top).
Color scheme in B and C, From blue to red for low to high values of ionic concentration.

Figure 6. Time course of burst and underlying synaptic currents for three different synaptic configurations. First row, Mem-
brane voltage time course. Second row, Total synaptic current on PY cell. A, Weak excitation and weak inhibition (scaling factors:
PY–PY � 0.9 and IN–PY � 0.8). B, Weak excitation and strong inhibition (scaling factors: PY–PY � 0.9 and IN–PY � 1.2). C,
Strong excitation and strong inhibition (scaling factors: PY–PY � 1.2 and IN–PY � 1.2).
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lateral K� diffusion did not change the
global structure of alternating epochs of
fast run and slow bursting (data not
shown).

Slow transitions of oscillatory states
in vivo
We recorded paroxysmal activity with
similar patterns of sustained transitions
between fast run and slow bursting from
association areas 5 and 7 in anesthetized
cats (Fig. 8). Cats under ketamine-xylazine
anesthesia reveal a sleep-like slow oscilla-
tory pattern with frequency 0.8 – 0.9 Hz
(Steriade and Contreras, 1998). In 31 cats
(n � 45), we found spontaneous paroxys-
mal discharges consisting of spike–wave
(polyspike–wave) complexes (slow burst-
ing, 1.5–3 Hz) and epochs of fast run (fast
spiking, 8 –15 Hz). In average, 2.4 (SD 1.4)
episodes of fast run occurred during a sei-
zure. Episodes of slow bursting and fast
run lasted 37.2 s (SD 22.2) and 4.9 s (SD
5.7), respectively. The mechanism of these
slow transitions is unknown. Our model-
ing work reproduces the qualitative fea-
tures of these transitions between slow
bursting and fast run and therefore sug-
gests activity-dependent modulation of
excitability (e.g., extracellular potassium
dynamics) as a candidate mechanism.

Discussion
Extracellular potassium concentration, [K�]o, reflects past firing
activity. In turn, elevated [K�]o increases the intrinsic excitability
of neurons. Yet, very little is known about the dynamics of such
activity-dependent modulation of intrinsic excitability. K�-
dependent regulation of neuronal activity essentially provides a
positive feedback mechanism that can lead to tonic depolariza-
tion and to instability exhibited through high-frequency sus-
tained firing. Here we found, however, that dynamic interplay of
fast processes (mediated by intrinsic and synaptic conductances)
and [K�]o dynamics can mediate very slow transitions between
two different oscillatory states in conditions of balanced excita-
tion and inhibition for elevated [K�]o. Thus, the inherently pos-
itive feedback mechanism of extracellular potassium dynamics
stabilizes cortical network oscillations and causes sustained neu-
ral firing structured into alternating periods of fast run and slow
bursting.

Bistability and hysteresis
In our neocortical network models, we found a bistability with
hysteresis between tonic firing and slow bursting under condi-
tions of balanced excitation and inhibition. Thus, the hysteresis
causes a sustained pattern of alternating episodes of fast and slow
oscillations in the absence of external input. Network connectiv-
ity was critical to maintain oscillations. Although the hysteresis
between several oscillatory states was found already in a single cell
model, those states appeared only transiently after initial stimu-
lation. Balanced excitatory and inhibitory connections between
pyramidal cells and interneurons were essential to stabilize the
network in the regimen of alternating modes. After an initial
increase in [K�]o, a small globally connected PY–IN network

exhibits periodic transitions between fast run and slow bursting
every few seconds. During fast run, the spiking frequency is suf-
ficiently high for extracellular K� to accumulate. When [K�]o

reaches the upper endpoint of the hysteresis, the network
switches back to slow bursting, during which [K�]o decreases
until it reaches the lower endpoint of the hysteresis for transition
to fast run. We showed that a similar mechanism also occurs in
larger networks with more realistic synaptic connectivity where
oscillatory regimens are initiated and driven by [K�]o dynamics.

Various types of potassium-mediated bistabilities have been
described in both experimental and theoretical studies. Elevated
[K�]o led to a bistability between tonic firing and quiescence in a
model of a hippocampal pyramidal cell (Hahn and Durand,
2001). Exposing cardiac Purkinje fibers to changing K� concen-
tration revealed two stable levels of resting potentials; switching
between these two stable states was associated with a hysteresis
(Gadsby and Cranefield, 1977). A simplified model of cerebellar
Purkinje cells comprised of high-threshold calcium and delayed-
rectifier potassium channels reproduced an experimentally ob-
served bistability between resting potential and a depolarized
state (Yuen et al., 1995). Myocardial cells exhibited two stable
levels of diastolic potential when exposed to 4 mM K� in vitro
(McCullough et al., 1990).

In contrast to these studies, we investigated here a novel bist-
ability between two different oscillatory firing regimens. In our
model, [K�]o dynamics not only created bistability but also
forced periodic transitions between two metastable oscillatory
states. The rate of [K�]o change depends on the balance between
neuronal K� currents, K� pumps, and glial buffering and, there-
fore, can be arbitrarily slow. Because of this, the time scale of slow

Figure 8. Sample trace of electrographic seizure composed of alternating epochs of spike-wave complexes (slow bursting) and
fast run. Top, Depth EEG and intracellular activity during normal slow oscillation and its transformation to paroxysmal activity
composed of fast runs and spike-wave complexes. Thick gray lines indicate periods of fast runs. The other periods of the seizure are
spike-wave complexes. Three expanded fragments indicated by horizontal bars and arrows show (from left to right) a period of
slow oscillation, a paroxysmal fast run, and a period of spike-wave discharges (slow bursting).
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transitions between oscillatory states in the model was not explic-
itly restricted by the time constants of any intrinsic or synaptic
conductances. The relative duration of the different oscillatory
modes depended on the width of hysteresis that was controlled by
the combination of intrinsic and synaptic currents. Thus, mech-
anisms proposed in this work can potentially explain a wide range
of oscillatory phenomena different by the time scale of oscilla-
tions and duration of alternating modes.

Other mechanisms may create multistability in synaptically
coupled networks. Synaptic depression mediated bistability be-
tween two modes of oscillations in networks with recurrent in-
hibitory connectivity (Manor and Nadim, 2001). Bistability be-
tween silence and firing mediated by nonlinear firing
characteristics of neurons and by feedback between the two neu-
rons was found in small biological circuits in vitro (Kleinfeld et
al., 1990). Although all of these mechanisms may potentially ex-
plain periodic transitions between different network states, an
explicit assumption about the time constant of plasticity that
should match the time constant of the slow transitions between
modes is required. Our model is free from this limitation. As we
showed here, interaction in a population of neurons (or neuronal
circuits) mediated by extracellular ionic concentrations may lead
to complex oscillatory regimens with continuous and arbitrarily
slow transitions between individual stable modes.

Balanced excitation and inhibition
In our model, extracellular potassium dynamics caused sustained
neural oscillations with alternating epochs of slow bursting and
fast run, provided synaptic excitation and inhibition was bal-
anced. Substantial change of the excitatory PY–PY or inhibitory
IN–PY coupling away from the balanced state created regimens
with exclusive fast tonic oscillations or slow bursting. The con-
cept of balanced synaptic excitation and inhibition plays a central
role in many neurobiological processes. Experimental in vivo, in
vitro, and modeling studies of transitions between cortical active
and silent states showed that periods of high activity are accom-
panied by a decrease in input resistance mediated by a simulta-
neous increase in both excitation and inhibition (Steriade et al.,
2001; Bazhenov et al., 2002; Compte et al., 2003). Self-sustained
activity mediated by balanced synaptic inputs might underlie
short-term memory (Durstewitz et al., 2000) and the modulation
of neuronal excitability with attention (Mehta et al., 2000). We
find it notable that potentially similar conditions for the balance
between excitation and inhibition can allow different forms of
self-sustained activity and state-dependent transitions between
different activity regimens.

Our model sheds a new light on the interaction between exci-
tatory and inhibitory synaptic coupling during cortical oscilla-
tions. Traditionally, the role of inhibitory interneurons is to
maintain reasonable firing frequency levels, and a shift in the
balance between excitation and inhibition toward excitation is
often associated with epileptic states (Dichter and Ayala, 1987;
Tasker and Dudek, 1991; Galarreta and Hestrin, 1998; Nelson
and Turrigiano, 1998). A number of studies conclude, however,
that synaptic inhibition remains functional in many forms of
paroxysmal activities (Higashima, 1988; Davenport et al., 1990;
Traub et al., 1996; Esclapez et al., 1997; Prince et al., 1997; Cohen
et al., 2002; Timofeev et al., 2002; Engel et al., 2003; Topolnik et
al., 2003). In agreement with these findings, the role of inhibition
is rather subtle in our model. If the balance of excitation and
inhibition is shifted toward excitation, the PY cells were suffi-
ciently active to stay in the bursting mode and fast run never
occurred. Because [K�]o decreased progressively during burst-

ing, the network switched to the silent state. Thus, contrary to
what was expected, decrease of inhibition in the model termi-
nated oscillations because a single epoch of slow bursting was
followed by silence (supplemental Fig. 6, available at www.
jneurosci.org as supplemental material).

Synaptic plasticity can change the balance between excitation
and inhibition and therefore move the network away from the
region of sustained oscillations. These dynamic changes in syn-
aptic weights could be especially prominent during high fre-
quency synchronized paroxysmal oscillations. Therefore, the
mechanism described in our model may potentially explain ter-
mination of the paroxysmal activity after seizures.

Conclusion
We describe a novel biophysical mechanism for slow periodic
transitions between different oscillatory states of cortical net-
works. A positive feedback mechanism modulating intrinsic ex-
citability caused metastable slow state transitions rather than un-
stable “run-away” dynamics as intuition might suggest. Such
slow transitions between different oscillatory regimens have been
observed in a number of in vivo recordings from different cortical
structures. We expect the dynamics observed in our modeling
work to be potentially valid for various brain states characterized
by a (transient) increase in cellular excitability. Neocortical par-
oxysmal activity mediated by elevated extracellular K� concen-
tration represents one “extreme” example of such a change in
excitability. Other potential mechanisms include upregulation of
some intrinsic depolarizing currents, increase of input resistance,
or decrease in extracellular Ca 2� concentration. Specifically, our
model predicts that (1) dynamic interaction of fast processes
(such as intrinsic and synaptic conductances) in the system with
a positive feedback mechanism controlling excitability (extracel-
lular potassium dynamics) can introduce dynamics on a much
slower time scale, (2) the slow patterning of sustained neuronal
firing behavior into alternating epochs of tonic firing and burst-
ing can be mediated by extracellular potassium dynamics, (3)
balanced synaptic excitation and inhibition is required for main-
taining the slow transition dynamics, and (4) the high-threshold
calcium conductance plays an important role in creating sus-
tained neural oscillations.
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